The Fractal Dimension Theory of Ismail's Third Entropy with Fractal Applications to CubeSat Technologies and Education

Authors

Keywords:

Fractal dimension (Df), Ismail's third entropy, CubeSat technologies, Education

Abstract

As a mathematical concept, entropy is the first and most advanced of its kind. Only a handful of studies have examined the fractal dimensions of fundamental entropies, including Shannon, Tsallis, and Rényi entropic expressions, in the literature. This served as a deliberative source of inspiration for further investigation into the direction of a cohesive information-theoretic fractal theory. The current study begins with introducing my third entropy formula, which is Ismail's entropy, or ( ) as a novel generalisation to Shannonian entropy with a forward-thinking connection to both long- and short-range interactions, or SRIs and LRIs, respectively. This would obviously lead to a fourfold unification with modern physics and statistical mechanics. This gives the study greater validity and weight. This study determines the fractal dimension of . This study played a significant role in drawing attention to the value of fractal geometry for the space industry and education, both of which are vital for advancing our civilizations. Consequently, a few possible fractal applications to education and CubeSat technologies are emphasized. Thus, the extensive hunt for additional ground-breaking research has concluded. Of course not this served as another motivation for me to suggest fresh, open challenges that would allow the scientific community to explore more avenues for research. Lastly, a combined overview is given with thought-provoking research topics and the next study stage.

References

‎[1] ‎ Mageed, I. A., & Zhang, Q. (2022). An introductory survey of entropy applications to information ‎theory, queuing theory, engineering, computer science, and statistical mechanics. 2022 27th ‎international conference on automation and computing (ICAC). (pp. 1–6). IEEE. DOI: ‎‎10.1109/ICAC55051.2022.9911077‎

‎[2] ‎ Mageed, I. A., & Zhang, Q. (2022). An information theoretic unified global theory for a stable $m/g/1$ ‎queue with potential maximum entropy applications to energy works. 2022 global energy conference ‎‎(GEC). (pp. 300–305). IEEE. DOI: 10.1109/GEC55014.2022.9986719‎

‎[3] ‎ Kouvatsos, D. D., Mageed, I. A., Anisimov, V., & Limnios, N. (2021). Non-extensive maximum entropy ‎formalisms and inductive inferences of stable m/g/1 queue with heavy tails. Advanced trends in ‎queueing theory, 2. DOI: 10.1002/9781119755234.ch5‎

‎[4] ‎ Mageed, I. A., & Bhat, A. H. (2022). Generalized z-entropy (Gze) and fractal dimensions. Applied ‎mathematics & information sciences, 16(5), 829–834. DOI: 10.18576/amis/160517‎

‎[5] ‎ Zhou, L., Johnson, C. R., & Weiskopf, D. (2021). Data-driven space-filling curves. IEEE transactions on ‎visualization and computer graphics, 27(2), 1591–1600. DOI: 10.1109/TVCG.2020.3030473‎

‎[6] ‎ Wang, W. J., Xu, X., Shao, Y., Liao, J. W., Jian, H. X., Xue, B., & Yang, S. G. (2022). Fractal growth of ‎giant amphiphiles in langmuir-blodgett films. Chinese journal of polymer science, 40(6), 556–566. DOI: ‎‎10.1007/s10118-022-2722-4‎

‎[7] ‎ Sadem, Z., Fathi, B., & Mustapha, L. (2023). Image edge detection and fractional calculation. ‎International journal of advanced natural sciences and engineering researches, 7(7), 222–225. DOI: ‎‎10.59287/ijanser.1418‎

‎[8] ‎ Mishra, J., Ranjan, S. (2023). Analysis of medical images using fractal geometry. research anthology on ‎improving medical imaging techniques for analysis and intervention. Research Anthology on Improving ‎Medical Imaging Techniques for Analysis and Intervention. DOI: 10.4018/978-1-6684-7544-7.ch078‎

‎[9] ‎ Zhao, T., Li, Z., & Deng, Y. (2023). Information fractal dimension of random permutation Set. Chaos, ‎solitons & fractals, 174, 113883. DOI: 10.1016/j.chaos.2023.113883‎

‎[10] ‎ Gao, X. L., Shao, Y. H., Yang, Y. H., & Zhou, W. X. (2022). Do the global grain spot markets exhibit ‎multifractal nature? Chaos, solitons & fractals, 164, 112663. DOI: 10.1016/j.chaos.2022.112663‎

‎[11] ‎ Pons, F., Messori, G., & Faranda, D. (2023). Statistical performance of local attractor dimension ‎estimators in non-Axiom A dynamical systems. Chaos: an interdisciplinary journal of nonlinear science, ‎‎33(7), 73143. DOI: 10.1063/5.0152370‎

‎[12] ‎ Mageed, I. A., & Zhang, Q. (2023). The rényian-tsallisian formalisms of the stable M/G/1 queue with ‎heavy tails entropian threshold theorems for the squared coefficient of variation. Electronic journal of ‎computer science and information technology, 9(1), 7–14. DOI: 10.52650/ejcsit.v9i1.135‎

‎[13] ‎ Mageed, I. A., & Zhang, Q. (2022). Inductive inferences of z-entropy formalism (zef) stable m/g/1 ‎queue with heavy tails. 2022 27th international conference on automation and computing (ICAC). (pp. 1–6). ‎IEEE. DOI: 10.1109/ICAC55051.2022.9911090‎

‎[14] ‎ Simon, J., Cardenas-Juarez, M., Briones, E., & Arce-Casas, A. (2020). A second-iteration square koch ‎fractal slot antenna for UHF downlink telemetry applications in cubesat small satellites. International ‎journal of antennas and propagation, 2020, 10. DOI: 10.1155/2020/9672959‎

‎[15] ‎ Meirambekuly, N., Temirbayev, A. A., Zhanabaev, Z. Z., Karibayev, B. A., Namazbayev, T. A., ‎Khaniyev, B. A., & Khaniyeva, A. K. (2022). Dual-band optical imaging system-integrated patch ‎antenna based on anisotropic fractal for earth-observation CubeSats. Ain shams engineering journal, ‎‎13(2), 101560. DOI: 10.1016/j.asej.2021.07.010‎

‎[16] ‎ Hensiek, D. V., López, E., Armijos, J., Benalcazar, D., Sandobalín, S., Mena, D., … Flores, G. (2019). ‎Design of a university nano-satellite for space weather monitoring. 2019 7th international engineering, ‎sciences and technology conference (Iestec). (pp. 580–585). IEEE. DOI: 10.1109/IESTEC46403.2019.00109‎

‎[17] ‎ Abulgasem, S., Tubbal, F., Raad, R., Theoharis, P. I., Lu, S., & Iranmanesh, S. (2021). Antenna designs ‎for CubeSats: a review. IEEE access, 9, 45289–45324. DOI: 10.1109/ACCESS.2021.3066632‎

‎[18] ‎ Beknazarova, S. S., & Kayumova, G. A. (2021). Fractal methodology of in improving the modern ‎educational process. The american journal of engineering and technology, 3(06), 129–133. DOI: ‎‎10.37547/tajet/Volume03Issue06-23‎

‎[19] ‎ Amirovna, K. M. (2021). The application of fractal art in the teaching of fine and applied arts in higher ‎education. International journal on integrated education, 4(10), 75–79. DOI: 10.31149/ijie.v4i10.2272‎

‎[20] ‎ Maryan, M., Opachko, M., Seben, V., & others. (2023). Methods of the fractal approach in science ‎education: innovative technology and concepts of computer modeling. ‎https://dspace.uzhnu.edu.ua/jspui/handle/lib/51789‎

‎[21] ‎ Mageed, I. A. (2023). Fractal dimension (df) theory of ismail’s second entropy (hq i) with potential ‎fractal applications to chatgpt, distributed ledger technologies (DLTs) and image processing (Ip). 2023 ‎international conference on computer and applications (ICCA). (pp. 1–6). IEEE. DOI: ‎‎10.1109/ICCA59364.2023.10401817‎

‎[22] ‎ Mageed, I. A. (2023). Fractal dimension (Df) of ismail’s fourth entropy (hiv(q,a1, a2,..,ak)) with fractal ‎applications to algorithms, haptics, and transportation. 2023 international conference on computer and ‎applications (ICCA). (pp. 1–6). IEEE. DOI: 10.1109/ICCA59364.2023.10401780‎

Published

2024-08-28

How to Cite

The Fractal Dimension Theory of Ismail’s Third Entropy with Fractal Applications to CubeSat Technologies and Education. (2024). Complexity Analysis and Applications, 1(1), 66-78. https://caa.reapress.com/journal/article/view/31