Soft plus-product: A new product for soft sets wıth ıts decısıon-makıng

Authors

  • Aslıhan Sezgin * Department of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya, Türkiye. https://orcid.org/0000-0002-1519-7294
  • Nazlı Helin Çam Department of Mathematics, Graduate School of Natural and Applied Sciences, Amasya University, Amasya, Türkiye.

https://doi.org/10.48314/caa.vi.41

Abstract

The idea of a soft set offers a comprehensive mathematical basis for managing uncertainty. Since they provide innovative methods for solving issues involving parametric data, soft set operations are important ideas in soft set theory. Here, we provide a novel product operation for soft sets, known as the "soft plus-product," together with all of its algebraic characteristics in relation to various kinds of soft equalities and subsets. Furthermore, by examining the distributions of soft plus-product over various soft set operations, we investigate the relationships between this product and other soft set operations. We end with an example that demonstrates how the method can be used successfully in different scenarios using the int-uni operator and the int-uni decision function for the soft plus-product for the int-uni decision-making method, which chooses a set of optimal elements from the alternatives. This paper is an essential contribution to the literature on soft sets, as the theoretical foundations of soft computing approaches are derived from purely mathematical principles.

Keywords:

Soft set, Soft plus-product, Soft subset, Soft equal relations

References

  1. [1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

  2. [2] Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications, 37(4–5), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5

  3. [3] Chen, D. G., Tsang, E. C. C., & Yeung, D. S. (2003). Some notes on the parameterization reduction of soft sets. Proceedings of the 2003 international conference on machine learning and cybernetics (IEEE cat. no. 03ex693) (Vol. 3, pp. 1442–1445). IEEE. https://doi.org/10.1109/ICMLC.2003.1259720

  4. [4] Chen, D., Tsang, E. C. C., Yeung, D. S., & Wang, X. (2005). The parameterization reduction of soft sets and its applications. Computers & mathematics with applications, 49(5–6), 757–763. https://doi.org/10.1016/j.camwa.2004.10.036

  5. [5] Xiao, Z., Chen, L., Zhong, B., & Ye, S. (2005). Recognition for soft information based on the theory of soft sets. Proceedings of ICSSSM’05. 2005 international conference on services systems and services management, 2005. (Vol. 2, pp. 1104–1106). IEEE. https://doi.org/10.1109/ICSSSM.2005.1500166

  6. [6] Mushrif, M. M., Sengupta, S., & Ray, A. K. (2006). Texture classification using a novel, soft-set theory based classification algorithm. Computer vision -accv 2006 (pp. 246–254). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11612032_26

  7. [7] Herawan, T., & Deris, M. M. (2009). A direct proof of every rough set is a soft set. 2009 third asia international conference on modelling & simulation (pp. 119–124). IEEE. https://doi.org/10.1109/AMS.2009.148

  8. [8] Herawan, T., & Deris, M. M. (2010). Soft decision making for patients suspected influenza. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 6018 LNCS, pp. 405–418). Springer. https://doi.org/10.1007/978-3-642-12179-1_34

  9. [9] Herawan, T. (2012). Soft set-based decision making for patients suspected influenza-like illness. International journal of modern physics: Conference series (Vol. 9, pp. 259–270). World Scientific. https://doi.org/10.1142/S2010194512005302

  10. [10] Maji, P. K., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision making problem. Computers & mathematics with applications, 44(8–9), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X

  11. [11] Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni--int decision making. European journal of operational research, 207(2), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004

  12. [12] Çağman, N., & Enginoğlu, S. (2010). Soft matrix theory and its decision making. Computers & mathematics with applications, 59(10), 3308–3314. https://doi.org/10.1016/j.camwa.2010.03.015

  13. [13] Gong, K., Xiao, Z., & Zhang, X. (2010). The bijective soft set with its operations. Computers & mathematics with applications, 60(8), 2270–2278. https://doi.org/10.1016/j.camwa.2010.08.017

  14. [14] Xiao, Z., Gong, K., Xia, S., & Zou, Y. (2010). Exclusive disjunctive soft sets. Computers & mathematics with applications, 59(6), 2128–2137. https://doi.org/10.1016/j.camwa.2009.12.018

  15. [15] Feng, F., Li, Y., & Çağman, N. (2012). Generalized uni--int decision making schemes based on choice value soft sets. European journal of operational research, 220(1), 162–170. https://doi.org/10.1016/j.ejor.2012.01.015

  16. [16] Feng, Q., & Zhou, Y. (2014). Soft discernibility matrix and its applications in decision making. Applied soft computing, 24, 749–756. https://doi.org/10.1016/j.asoc.2014.08.042

  17. [17] Kharal, A. (2014). Soft approximations and uni-int decision making. The scientific world journal, 2014(1), 327408. https://doi.org/10.1155/2014/327408

  18. [18] Dauda, M. K., Mamat, M., & Waziri, M. Y. (2015). An application of soft set in decision making. Jurnal teknologi (sciences & engineering), 77(13), 119–122. https://doi.org/10.11113/jt.v77.6367

  19. [19] Inthumathi, V., Chitra, V., & Jayasree, S. (2017). The role of operators on soft sets in decision making problems. International journal of computational and applied mathematics, 12(3), 899–910. https://www.ripublication.com/ijcam17/ijcamv12n3_26.pdf

  20. [20] Atagün, A. O., Kamacı, H., & Oktay, O. (2018). Reduced soft matrices and generalized products with applications in decision making. Neural computing and applications, 29(9), 445–456. https://doi.org/10.1007/s00521-016-2542-y

  21. [21] Kamacı, H., Saltık, K., Fulya Akız, H., & Osman Atagün, A. (2018). Cardinality inverse soft matrix theory and its applications in multicriteria group decision making. Journal of intelligent & fuzzy systems, 34(3), 2031–2049. https://doi.org/10.3233/JIFS-17876

  22. [22] Yang, J., & Yao, Y. (2020). Semantics of soft sets and three-way decision with soft sets. Knowledge-based systems, 194, 105538. https://doi.org/10.1016/j.knosys.2020.105538

  23. [23] Petchimuthu, S., Garg, H., Kamacı, H., & Atagün, A. O. (2020). The mean operators and generalized products of fuzzy soft matrices and their applications in MCGDM. Computational and applied mathematics, 39(2), 68. https://doi.org/10.1007/s40314-020-1083-2

  24. [24] Zorlutuna, I. (2021). Soft set-valued mappings and their application in decision making problems. Filomat, 35(5), 1725–1733. https://doi.org/10.2298/FIL2105725Z

  25. [25] Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4–5), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6

  26. [26] Pei, D., & Miao, D. (2005). From soft sets to information systems. 2005 IEEE international conference on granular computing (Vol. 2, pp. 617–621). IEEE. https://doi.org/10.1109/GRC.2005.1547365

  27. [27] Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & mathematics with applications, 57(9), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009

  28. [28] Yang, C. F. (2008). A note on “soft set theory.” Computers & mathematics with applications, 56(7), 1899–1900. https://doi.org/10.1016/j.camwa.2008.03.019

  29. [29] Feng, F., Li, C., Davvaz, B., & Ali, M. I. (2010). Soft sets combined with fuzzy sets and rough sets: A tentative approach. Soft computing, 14(9), 899–911. https://doi.org/10.1007/s00500-009-0465-6

  30. [30] Jiang, Y., Tang, Y., Chen, Q., Wang, J., & Tang, S. (2010). Extending soft sets with description logics. Computers & mathematics with applications, 59(6), 2087–2096. https://doi.org/10.1016/j.camwa.2009.12.014

  31. [31] Ali, M. I., Shabir, M., & Naz, M. (2011). Algebraic structures of soft sets associated with new operations. Computers & mathematics with applications, 61(9), 2647–2654. https://doi.org/10.1016/j.camwa.2011.03.011

  32. [32] Neog, T. J., & Sut, D. K. (2011). A new approach to the theory of soft sets. International journal of computer applications, 32(2), 1–6. 10.5120/3874-5415

  33. [33] Li, F. (2011). Notes on the soft operations. ARPN journal of systems and software, 1(6), 205–208. https://doi.org/10.1142/9789814365147_0008

  34. [34] Ge, X., & Yang, S. (2011). Investigations on some operations of soft sets. World academy of science engineering and technology, 5(3), 370–373. https://doi.org/10.5281/zenodo.1085167

  35. [35] Singh, D., & Onyeozili, I. A. (2012). Notes on soft matrices operations. ARPN journal of science and technology, 2(9), 861–869.

  36. [36] Singh, D., & A Onyeozili, I. (2012). On some new properties of soft set operations. International journal of computer applications, 59(4), 39–44. https://doi.org/10.5120/9538-3975

  37. [37] Singh, D., & Onyeozili, I. A. (2012). Some results on distributive and absorption properties on soft operations. IOSR journal of mathematics, 4(2), 18–30. https://www.iosrjournals.org/iosr-jm/papers/Vol4-issue2/C0421830.pdf

  38. [38] Singh, D., & Onyeozili, I. A. (2012). Some conceptual misunderstanding of the fundamentals of soft set theory. ARPN journal of systems and software, 2(9), 251–254. https://www.bing.com/ck/a?!&&p=1da2a675065ba3bec536c8ebe447385f327b8c998808be43f231b86597da2b21JmltdHM9MTc1OTE5MDQwMA&ptn=3&ver=2&hsh=4&fclid=0a4bbdac-65aa-6430-2ca3-a8c964126593&psq=Singh%2C+D.%2C+%26+Onyeozili%2C+I.+A.+(2012).+Some+conceptual+misunderst

  39. [39] Zhu, P., & Wen, Q. (2013). Operations on soft sets revisited. Journal of applied mathematics, 2013(1), 105752. http://dx.doi.org/10.1155/2013/105752

  40. [40] Sen, J. (2014). On algebraic structure of soft sets. Annals of fuzzy mathematics and informatics, 7(6), 1013–1020. http://www.afmi.or.kr/papers/2014/Vol-07_No-06/AFMI-7-6(859-1020)/AFMI-7-6(1013-1020)-H-130711R1.pdf

  41. [41] Eren, Ö. F., & Çalışıcı, H. (2019). On some operations of soft sets [presentation]. The fourth international conference on computational mathematics and engineering sciences (pp. 32–54).

  42. [42] Stojanović, N. S. (2021). A new operation on soft sets: Extended symmetric difference of soft sets. Vojnotehnički glasnik/military technical courier, 69(4), 779–791. https://doi.org/10.5937/vojtehg69-33655

  43. [43] Sezgin, A., & Yavuz, E. (2023). A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin Erbakan üniversitesi fen ve mühendislik bilimleri dergisi, 5(2), 189–208. https://doi.org/10.47112/neufmbd.2023.18

  44. [44] Sezgin, A., & Sarialioğlu, M. (2024). A new soft set operation: Complementary soft binary piecewise theta (θ) operation. Kadirli uygulamalı bilimler fakültesi dergisi, 4(2), 325-357. (In Turkish). https://kadirliubfd.com/index.php/kubfd/article/view/97

  45. [45] Sezgin, A., & Cagman, N. (2024). A new soft set operation: complementary soft binary piecewise difference () operation. Osmaniye korkut ata üniversitesi fen bilimleri enstitüsü dergisi, 7(1), 58-94. https://doi.org/10.47495/okufbed.1308379

  46. [46] Sezgin, A., Aybek, F. N., & Güngör, N. B. (2023). New soft set operation: Complementary soft binary piecewise union operation. Acta informatica malaysia, 7(1), 38–53. http://doi.org/10.26480/aim.01.2023.38.53

  47. [47] Sezgin, A., Aybek, F. N., & Atagün, A. O. (2023). A new soft set operation: Complementary soft binary piecewise intersection (∩) operation. Black sea journal of engineering and science, 6(4), 330–346. https://doi.org/10.34248/bsengineering.1319873

  48. [48] Sezgin, A., & Demirci, A. M. (2023). A new soft set operation: Complementary soft binary piecewise star (*) operation. Ikonion journal of mathematics, 5(2), 24–52. https://doi.org/10.54286/ikjm.1304566

  49. [49] Qin, K., & Hong, Z. (2010). On soft equality. Journal of computational and applied mathematics, 234(5), 1347–1355. https://doi.org/10.1016/j.cam.2010.02.028

  50. [50] Jun, Y. B., & Yang, X. (2011). A note on the paper “Combination of interval-valued fuzzy set and soft set”. Computers & mathematics with applications, 61(5), 1468–1470. https://doi.org/10.1016/j.camwa.2010.12.077

  51. [51] Feng, F., & Li, Y. (2013). Soft subsets and soft product operations. Information sciences, 232, 44–57. https://doi.org/10.1016/j.ins.2013.01.001

  52. [52] Liu, X., Feng, F., & Jun, Y. B. (2012). A note on generalized soft equal relations. Computers & mathematics with applications, 64(4), 572–578. https://doi.org/10.1016/j.camwa.2011.12.052

  53. [53] Abbas, M., Ali, B., & Romaguera, S. (2014). On generalized soft equality and soft lattice structure. Filomat, 28(6), 1191–1203. http://hdl.handle.net/2263/43570

  54. [54] Abbas, M., Ali, M. I., & Romaguera, S. (2017). Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, 31(19), 5955--5964. https://www.jstor.org/stable/27381589

  55. [55] Al-shami, T. M. (2019). Investigation and corrigendum to some results related to g-soft equality and gf-soft equality relations. Filomat, 33(11), 3375--3383. https://www.jstor.org/stable/27382788

  56. [56] Alshami, T., & EL-Shafei, M. (2020). $ T $-soft equality relation. Turkish journal of mathematics, 44(4), 1427–1441. https://doi.org/10.3906/mat-2005-117

  57. [57] Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M., & George, R. (2022). A contribution to the theory of soft sets via generalized relaxed operations. Mathematics, 10(15), 2636. https://doi.org/10.3390/math10152636

  58. [58] Sezgi̇N, A., Atagün, A. O., & Cagan, N. (2025). A complete study on and-product of soft sets. Sigma journal of engineering and natural sciences, 43(1), 1–14. https://doi.org/10.14744/sigma.2025.00002

  59. [59] Çağman, N. (2021). Conditional complements of sets and their application to group theory. Journal of new results in science, 10(3), 67–74. https://doi.org/10.54187/jnrs.1003890

  60. [60] Sezgin, A., Çağman, N., Atagün, A. O., & Aybek, F. N. (2023). Complemental binary operations of sets and their application to group theory. Matrix science mathematic, 7(2), 114–121. http://doi.org/10.26480/msmk.02.2023.114.121

  61. [61] Sezgin, A., Aybek, F., & Güngör, N. B. (2024). Computational algorthims and numerical dimensions. In press. https://doi.org/10.22105/cand.2024.475779.1107

  62. [62] Sezgin, A., & Demirci, A. M. (2024). A new type of extended soft set operation: Complementary extended theta operation. Dünya sağlık ve tabiat bilimleri dergisi, 7(1), 62-88. https://doi.org/10.56728/dustad.1476447

  63. [63] Sezgin, A., & Yavuz, E. (2024). Soft binary piecewise plus operation: A new type of operation for soft sets. Uncertainty discourse and applications, 1(1), 79–100. https://doi.org/10.48313/uda.v1i1.26

  64. [64] Sezgin, A., & Yavuz, E. (2024). Soft binary piecewise plus operation: A new type of operation for soft sets. Uncertainty discourse and applications, 1(1), 79–100. https://doi.org/10.48313/uda.v1i1.26

  65. [65] Sezer, A. S., Atagün, A. O., & Çağman, N. (2013). A new view to N-group theory: Soft N-groups. Fasciculi mathematici, 51, 1-21. https://www.researchgate.net/profile/Aslihan-Sezgin-2/publication/263651532_A_new_view_to_N-group_theory-Soft_N-groups/links/0046353b68f17da045000000/A-new-view-to-N-group-theory-Soft-N-groups.pdf

  66. [66] Sezer, A. S. (2014). Certain characterizations of LA-semigroups by soft sets. Journal of intelligent & fuzzy systems, 27(2), 1035–1046. https://doi.org/10.3233/IFS-131064

  67. [67] Sezer, A. S. (2014). A new approach to LA-semigroup theory via the soft sets. Journal of intelligent & fuzzy systems, 26(5), 2483–2495. https://doi.org/10.3233/IFS-130918

  68. [68] Sezer, A. S., Cagman, N., & Atagün, A. O. (2014). Soft intersection interior ideals, Quasi-ideals and generalized bi-ideals: A new approach to semigroup theory II. Journal of multiple-valued logic and soft computing, 23(1–2), 1-47. https://hdl.handle.net/20.500.12450/637

  69. [69] Sezer, A. S., Atagün, A. O., & Çağman, N. (2014). N-group SI-action and its applications to N-Group Theory. Fasciculi mathematici, 52, 139–153. https://www.researchgate.net/profile/Aslihan-Sezgin-2/publication/263651539_N-group_SI-action_and_its_application_to_N-group_theory/links/54353a080cf2bf1f1f283279/N-group-SI-action-and-its-application-to-N-group-theory.pdf

  70. [70] Sezer, A. S., Çağman, N., & Atagün, A. O. (2015). Uni-soft substructures of groups. Annals of fuzzy mathematics and informatics, 9(2), 235–246. http://www.afmi.or.kr/papers/2015/Vol-09_No-02/PDF/AFMI-9-2(235-246)-H-140701R2.pdf

  71. [71] Atagün, A. O., & Sezer, A. S. (2015). Soft sets, soft semimodules and soft substructures of semimodules. Mathematical sciences letters, 4(3), 235. http://dx.doi.org/10.12785/msl/040303

  72. [72] Atagün, A. O., & Sezgin, A. (2017). Int-soft substructures of groups and semirings with applications. Applied mathematics & information sciences, 11(1), 105–113. http://dx.doi.org/10.18576/amis/110113

  73. [73] Tunçay, M., & Sezgin, A. (2016). Soft union ring and its applications to ring theory. International journal of computer applications, 151(9), 7–13. 10.5120/ijca2016911867

  74. [74] Mustuoglu, E., Sezgin, A., & Türk, Z. K. (2016). Some characterizations on soft uni-groups and normal soft uni-groups. International journal of computer applications, 155(10), 1–8. 10.5120/ijca2016912412

  75. [75] Sezgin, A. (2016). A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. Algebra lett, 2016, (3), 1–46. https://scik.org/index.php/abl/article/viewFile/2989/1473

  76. [76] Sezer, A. S., & Atagün, A. O. (2016). A new kind of vector space: Soft vector space. Southeast asian bulletin of mathematics, 40(5), 753–770. https://www.researchgate.net/profile/Aslihan-Sezgin-2/publication/327652370_A_New_Kind_of_Vector_Space_Soft_Vector_Space/links/5b9bbf4092851ca9ed08a807/A-New-Kind-of-Vector-Space-Soft-Vector-Space.pdf

  77. [77] Sezgin, A., Çağman, N., & Atagün, A. O. (2017). A completely new view to soft intersection rings via soft uni-int product. Applied soft computing, 54, 366–392. https://doi.org/10.1016/j.asoc.2016.10.004

  78. [78] Khan, A., Izhar, M., & Sezign, A. (2017). Characterizations of abel grassmann’s groupoids by the properties of their double-framed soft ideals. International journal of analysis and applications, 15(1), 62–74. https://doi.org/10.28924/2291-8639

  79. [79] Gulistan, M., Feng, F., Khan, M., & Sezgin, A. (2018). Characterizations of right weakly regular semigroups in terms of generalized cubic soft sets. Mathematics, 6(12), 293. https://doi.org/10.3390/math6120293

  80. [80] Atagün, A. O., & Sezgin, A. (2018). A new view to near-ring theory: Soft near-rings. South east asian journal of mathematics & mathematical sciences, 14(3), 1–14. https://rsmams.org/download/articles/2_14_3_1150608629_Paper 1 A new view to near ring theory Soft near rings.pdf

  81. [81] Mahmood, T., Rehman, Z. U., & Sezgin, A. (2018). Lattice ordered soft near rings. Korean journal of mathematics, 26(3), 503–517. https://doi.org/10.11568/kjm.2018.26.3.503

  82. [82] Sezgin, A. (2018). A new view on AG-groupoid theory via soft sets for uncertainty modeling. Filomat, 32(8), 2995–3030. https://doi.org/10.2298/FIL1808995S

  83. [83] Atagün, A. O., & Sezgin, A. (2018). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings. Mathematical sciences letters an international journal, 7(1), 37–42. http://dx.doi.org/10.18576/msl/070106

  84. [84] Jana, C., Pal, M., Karaaslan, F., & Sezgi̇n, A. (2019). (α, β)-soft intersectional rings and ideals with their applications. New mathematics and natural computation, 15(02), 333-350. https://doi.org/10.1142/S1793005719500182

  85. [85] Atagun, A., Kamaci, H. I., Tastekin, I., & Sezgin, A. (2019). P-properties in near-rings. Journal of mathematical and fundamental sciences, 51(2), 152–167. http://doi.org/10.5614/j.math.fund.sci.2019.51.2.5

  86. [86] Sezgin, A. (2020). Soft covered ideals in semigroups. Acta universitatis sapientiae, mathematica, 12(2), 317–346. http://doi.org/10.2478/ausm-2020-0023

  87. [87] Sezgin, A., Atagün, A. O., Çağman, N., & Demir, H. (2022). On near-rings with soft union ideals and applications. New mathematics and natural computation, 18(02), 495–511. https://doi.org/10.1142/S1793005722500247

  88. [88] Atagün, A. O., & Sezgin, A. (2022). More on prime, maximal and principal soft ideals of soft rings. New mathematics and natural computation, 18(01), 195–207. https://doi.org/10.1142/S1793005722500119

  89. [89] Manikantan, T., Ramasany, P., & Sezgin, A. (2023). Soft quasi-ideals of soft near-rings. Sigma journal of engineering and natural science, 41(3), 565–574. https://doi.org/10.14744/sigma.2023.00062

  90. [90] Riaz, M., Hashmi, M., Karaaslan, F., Sezgin, A., Mohammed, M., & Khalaf, M. (2023). Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. Computer modeling in engineering & sciences, 136(2), 1759. http://dx.doi.org/10.32604/cmes.2023.023327

  91. [91] Sezgin, A., Şenyiğit, E., & Luzum, M. (2025). A new product for soft sets with its decision-making: Soft Gamma-product. Earthline journal of mathematical sciences, 15(2), 211–234. https://doi.org/10.34198/ejms.15225.211234

Published

2025-03-07

How to Cite

Sezgin, A., & Çam, N. H. (2025). Soft plus-product: A new product for soft sets wıth ıts decısıon-makıng. Complexity Analysis and Applications, 2(1), 39-64. https://doi.org/10.48314/caa.vi.41