Soft plus-product: A new product for soft sets wıth ıts decısıon-makıng
Abstract
The idea of a soft set offers a comprehensive mathematical basis for managing uncertainty. Since they provide innovative methods for solving issues involving parametric data, soft set operations are important ideas in soft set theory. Here, we provide a novel product operation for soft sets, known as the "soft plus-product," together with all of its algebraic characteristics in relation to various kinds of soft equalities and subsets. Furthermore, by examining the distributions of soft plus-product over various soft set operations, we investigate the relationships between this product and other soft set operations. We end with an example that demonstrates how the method can be used successfully in different scenarios using the int-uni operator and the int-uni decision function for the soft plus-product for the int-uni decision-making method, which chooses a set of optimal elements from the alternatives. This paper is an essential contribution to the literature on soft sets, as the theoretical foundations of soft computing approaches are derived from purely mathematical principles.
Keywords:
Soft set, Soft plus-product, Soft subset, Soft equal relationsReferences
- [1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
- [2] Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications, 37(4–5), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
- [3] Chen, D. G., Tsang, E. C. C., & Yeung, D. S. (2003). Some notes on the parameterization reduction of soft sets. Proceedings of the 2003 international conference on machine learning and cybernetics (IEEE cat. no. 03ex693) (Vol. 3, pp. 1442–1445). IEEE. https://doi.org/10.1109/ICMLC.2003.1259720
- [4] Chen, D., Tsang, E. C. C., Yeung, D. S., & Wang, X. (2005). The parameterization reduction of soft sets and its applications. Computers & mathematics with applications, 49(5–6), 757–763. https://doi.org/10.1016/j.camwa.2004.10.036
- [5] Xiao, Z., Chen, L., Zhong, B., & Ye, S. (2005). Recognition for soft information based on the theory of soft sets. Proceedings of ICSSSM’05. 2005 international conference on services systems and services management, 2005. (Vol. 2, pp. 1104–1106). IEEE. https://doi.org/10.1109/ICSSSM.2005.1500166
- [6] Mushrif, M. M., Sengupta, S., & Ray, A. K. (2006). Texture classification using a novel, soft-set theory based classification algorithm. Computer vision -accv 2006 (pp. 246–254). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11612032_26
- [7] Herawan, T., & Deris, M. M. (2009). A direct proof of every rough set is a soft set. 2009 third asia international conference on modelling & simulation (pp. 119–124). IEEE. https://doi.org/10.1109/AMS.2009.148
- [8] Herawan, T., & Deris, M. M. (2010). Soft decision making for patients suspected influenza. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 6018 LNCS, pp. 405–418). Springer. https://doi.org/10.1007/978-3-642-12179-1_34
- [9] Herawan, T. (2012). Soft set-based decision making for patients suspected influenza-like illness. International journal of modern physics: Conference series (Vol. 9, pp. 259–270). World Scientific. https://doi.org/10.1142/S2010194512005302
- [10] Maji, P. K., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision making problem. Computers & mathematics with applications, 44(8–9), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X
- [11] Çağman, N., & Enginoğlu, S. (2010). Soft set theory and uni--int decision making. European journal of operational research, 207(2), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004
- [12] Çağman, N., & Enginoğlu, S. (2010). Soft matrix theory and its decision making. Computers & mathematics with applications, 59(10), 3308–3314. https://doi.org/10.1016/j.camwa.2010.03.015
- [13] Gong, K., Xiao, Z., & Zhang, X. (2010). The bijective soft set with its operations. Computers & mathematics with applications, 60(8), 2270–2278. https://doi.org/10.1016/j.camwa.2010.08.017
- [14] Xiao, Z., Gong, K., Xia, S., & Zou, Y. (2010). Exclusive disjunctive soft sets. Computers & mathematics with applications, 59(6), 2128–2137. https://doi.org/10.1016/j.camwa.2009.12.018
- [15] Feng, F., Li, Y., & Çağman, N. (2012). Generalized uni--int decision making schemes based on choice value soft sets. European journal of operational research, 220(1), 162–170. https://doi.org/10.1016/j.ejor.2012.01.015
- [16] Feng, Q., & Zhou, Y. (2014). Soft discernibility matrix and its applications in decision making. Applied soft computing, 24, 749–756. https://doi.org/10.1016/j.asoc.2014.08.042
- [17] Kharal, A. (2014). Soft approximations and uni-int decision making. The scientific world journal, 2014(1), 327408. https://doi.org/10.1155/2014/327408
- [18] Dauda, M. K., Mamat, M., & Waziri, M. Y. (2015). An application of soft set in decision making. Jurnal teknologi (sciences & engineering), 77(13), 119–122. https://doi.org/10.11113/jt.v77.6367
- [19] Inthumathi, V., Chitra, V., & Jayasree, S. (2017). The role of operators on soft sets in decision making problems. International journal of computational and applied mathematics, 12(3), 899–910. https://www.ripublication.com/ijcam17/ijcamv12n3_26.pdf
- [20] Atagün, A. O., Kamacı, H., & Oktay, O. (2018). Reduced soft matrices and generalized products with applications in decision making. Neural computing and applications, 29(9), 445–456. https://doi.org/10.1007/s00521-016-2542-y
- [21] Kamacı, H., Saltık, K., Fulya Akız, H., & Osman Atagün, A. (2018). Cardinality inverse soft matrix theory and its applications in multicriteria group decision making. Journal of intelligent & fuzzy systems, 34(3), 2031–2049. https://doi.org/10.3233/JIFS-17876
- [22] Yang, J., & Yao, Y. (2020). Semantics of soft sets and three-way decision with soft sets. Knowledge-based systems, 194, 105538. https://doi.org/10.1016/j.knosys.2020.105538
- [23] Petchimuthu, S., Garg, H., Kamacı, H., & Atagün, A. O. (2020). The mean operators and generalized products of fuzzy soft matrices and their applications in MCGDM. Computational and applied mathematics, 39(2), 68. https://doi.org/10.1007/s40314-020-1083-2
- [24] Zorlutuna, I. (2021). Soft set-valued mappings and their application in decision making problems. Filomat, 35(5), 1725–1733. https://doi.org/10.2298/FIL2105725Z
- [25] Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, 45(4–5), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6
- [26] Pei, D., & Miao, D. (2005). From soft sets to information systems. 2005 IEEE international conference on granular computing (Vol. 2, pp. 617–621). IEEE. https://doi.org/10.1109/GRC.2005.1547365
- [27] Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & mathematics with applications, 57(9), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009
- [28] Yang, C. F. (2008). A note on “soft set theory.” Computers & mathematics with applications, 56(7), 1899–1900. https://doi.org/10.1016/j.camwa.2008.03.019
- [29] Feng, F., Li, C., Davvaz, B., & Ali, M. I. (2010). Soft sets combined with fuzzy sets and rough sets: A tentative approach. Soft computing, 14(9), 899–911. https://doi.org/10.1007/s00500-009-0465-6
- [30] Jiang, Y., Tang, Y., Chen, Q., Wang, J., & Tang, S. (2010). Extending soft sets with description logics. Computers & mathematics with applications, 59(6), 2087–2096. https://doi.org/10.1016/j.camwa.2009.12.014
- [31] Ali, M. I., Shabir, M., & Naz, M. (2011). Algebraic structures of soft sets associated with new operations. Computers & mathematics with applications, 61(9), 2647–2654. https://doi.org/10.1016/j.camwa.2011.03.011
- [32] Neog, T. J., & Sut, D. K. (2011). A new approach to the theory of soft sets. International journal of computer applications, 32(2), 1–6. 10.5120/3874-5415
- [33] Li, F. (2011). Notes on the soft operations. ARPN journal of systems and software, 1(6), 205–208. https://doi.org/10.1142/9789814365147_0008
- [34] Ge, X., & Yang, S. (2011). Investigations on some operations of soft sets. World academy of science engineering and technology, 5(3), 370–373. https://doi.org/10.5281/zenodo.1085167
- [35] Singh, D., & Onyeozili, I. A. (2012). Notes on soft matrices operations. ARPN journal of science and technology, 2(9), 861–869.
- [36] Singh, D., & A Onyeozili, I. (2012). On some new properties of soft set operations. International journal of computer applications, 59(4), 39–44. https://doi.org/10.5120/9538-3975
- [37] Singh, D., & Onyeozili, I. A. (2012). Some results on distributive and absorption properties on soft operations. IOSR journal of mathematics, 4(2), 18–30. https://www.iosrjournals.org/iosr-jm/papers/Vol4-issue2/C0421830.pdf
- [38] Singh, D., & Onyeozili, I. A. (2012). Some conceptual misunderstanding of the fundamentals of soft set theory. ARPN journal of systems and software, 2(9), 251–254. https://www.bing.com/ck/a?!&&p=1da2a675065ba3bec536c8ebe447385f327b8c998808be43f231b86597da2b21JmltdHM9MTc1OTE5MDQwMA&ptn=3&ver=2&hsh=4&fclid=0a4bbdac-65aa-6430-2ca3-a8c964126593&psq=Singh%2C+D.%2C+%26+Onyeozili%2C+I.+A.+(2012).+Some+conceptual+misunderst
- [39] Zhu, P., & Wen, Q. (2013). Operations on soft sets revisited. Journal of applied mathematics, 2013(1), 105752. http://dx.doi.org/10.1155/2013/105752
- [40] Sen, J. (2014). On algebraic structure of soft sets. Annals of fuzzy mathematics and informatics, 7(6), 1013–1020. http://www.afmi.or.kr/papers/2014/Vol-07_No-06/AFMI-7-6(859-1020)/AFMI-7-6(1013-1020)-H-130711R1.pdf
- [41] Eren, Ö. F., & Çalışıcı, H. (2019). On some operations of soft sets [presentation]. The fourth international conference on computational mathematics and engineering sciences (pp. 32–54).
- [42] Stojanović, N. S. (2021). A new operation on soft sets: Extended symmetric difference of soft sets. Vojnotehnički glasnik/military technical courier, 69(4), 779–791. https://doi.org/10.5937/vojtehg69-33655
- [43] Sezgin, A., & Yavuz, E. (2023). A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin Erbakan üniversitesi fen ve mühendislik bilimleri dergisi, 5(2), 189–208. https://doi.org/10.47112/neufmbd.2023.18
- [44] Sezgin, A., & Sarialioğlu, M. (2024). A new soft set operation: Complementary soft binary piecewise theta (θ) operation. Kadirli uygulamalı bilimler fakültesi dergisi, 4(2), 325-357. (In Turkish). https://kadirliubfd.com/index.php/kubfd/article/view/97
- [45] Sezgin, A., & Cagman, N. (2024). A new soft set operation: complementary soft binary piecewise difference () operation. Osmaniye korkut ata üniversitesi fen bilimleri enstitüsü dergisi, 7(1), 58-94. https://doi.org/10.47495/okufbed.1308379
- [46] Sezgin, A., Aybek, F. N., & Güngör, N. B. (2023). New soft set operation: Complementary soft binary piecewise union operation. Acta informatica malaysia, 7(1), 38–53. http://doi.org/10.26480/aim.01.2023.38.53
- [47] Sezgin, A., Aybek, F. N., & Atagün, A. O. (2023). A new soft set operation: Complementary soft binary piecewise intersection (∩) operation. Black sea journal of engineering and science, 6(4), 330–346. https://doi.org/10.34248/bsengineering.1319873
- [48] Sezgin, A., & Demirci, A. M. (2023). A new soft set operation: Complementary soft binary piecewise star (*) operation. Ikonion journal of mathematics, 5(2), 24–52. https://doi.org/10.54286/ikjm.1304566
- [49] Qin, K., & Hong, Z. (2010). On soft equality. Journal of computational and applied mathematics, 234(5), 1347–1355. https://doi.org/10.1016/j.cam.2010.02.028
- [50] Jun, Y. B., & Yang, X. (2011). A note on the paper “Combination of interval-valued fuzzy set and soft set”. Computers & mathematics with applications, 61(5), 1468–1470. https://doi.org/10.1016/j.camwa.2010.12.077
- [51] Feng, F., & Li, Y. (2013). Soft subsets and soft product operations. Information sciences, 232, 44–57. https://doi.org/10.1016/j.ins.2013.01.001
- [52] Liu, X., Feng, F., & Jun, Y. B. (2012). A note on generalized soft equal relations. Computers & mathematics with applications, 64(4), 572–578. https://doi.org/10.1016/j.camwa.2011.12.052
- [53] Abbas, M., Ali, B., & Romaguera, S. (2014). On generalized soft equality and soft lattice structure. Filomat, 28(6), 1191–1203. http://hdl.handle.net/2263/43570
- [54] Abbas, M., Ali, M. I., & Romaguera, S. (2017). Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, 31(19), 5955--5964. https://www.jstor.org/stable/27381589
- [55] Al-shami, T. M. (2019). Investigation and corrigendum to some results related to g-soft equality and gf-soft equality relations. Filomat, 33(11), 3375--3383. https://www.jstor.org/stable/27382788
- [56] Alshami, T., & EL-Shafei, M. (2020). $ T $-soft equality relation. Turkish journal of mathematics, 44(4), 1427–1441. https://doi.org/10.3906/mat-2005-117
- [57] Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M., & George, R. (2022). A contribution to the theory of soft sets via generalized relaxed operations. Mathematics, 10(15), 2636. https://doi.org/10.3390/math10152636
- [58] Sezgi̇N, A., Atagün, A. O., & Cagan, N. (2025). A complete study on and-product of soft sets. Sigma journal of engineering and natural sciences, 43(1), 1–14. https://doi.org/10.14744/sigma.2025.00002
- [59] Çağman, N. (2021). Conditional complements of sets and their application to group theory. Journal of new results in science, 10(3), 67–74. https://doi.org/10.54187/jnrs.1003890
- [60] Sezgin, A., Çağman, N., Atagün, A. O., & Aybek, F. N. (2023). Complemental binary operations of sets and their application to group theory. Matrix science mathematic, 7(2), 114–121. http://doi.org/10.26480/msmk.02.2023.114.121
- [61] Sezgin, A., Aybek, F., & Güngör, N. B. (2024). Computational algorthims and numerical dimensions. In press. https://doi.org/10.22105/cand.2024.475779.1107
- [62] Sezgin, A., & Demirci, A. M. (2024). A new type of extended soft set operation: Complementary extended theta operation. Dünya sağlık ve tabiat bilimleri dergisi, 7(1), 62-88. https://doi.org/10.56728/dustad.1476447
- [63] Sezgin, A., & Yavuz, E. (2024). Soft binary piecewise plus operation: A new type of operation for soft sets. Uncertainty discourse and applications, 1(1), 79–100. https://doi.org/10.48313/uda.v1i1.26
- [64] Sezgin, A., & Yavuz, E. (2024). Soft binary piecewise plus operation: A new type of operation for soft sets. Uncertainty discourse and applications, 1(1), 79–100. https://doi.org/10.48313/uda.v1i1.26
- [65] Sezer, A. S., Atagün, A. O., & Çağman, N. (2013). A new view to N-group theory: Soft N-groups. Fasciculi mathematici, 51, 1-21. https://www.researchgate.net/profile/Aslihan-Sezgin-2/publication/263651532_A_new_view_to_N-group_theory-Soft_N-groups/links/0046353b68f17da045000000/A-new-view-to-N-group-theory-Soft-N-groups.pdf
- [66] Sezer, A. S. (2014). Certain characterizations of LA-semigroups by soft sets. Journal of intelligent & fuzzy systems, 27(2), 1035–1046. https://doi.org/10.3233/IFS-131064
- [67] Sezer, A. S. (2014). A new approach to LA-semigroup theory via the soft sets. Journal of intelligent & fuzzy systems, 26(5), 2483–2495. https://doi.org/10.3233/IFS-130918
- [68] Sezer, A. S., Cagman, N., & Atagün, A. O. (2014). Soft intersection interior ideals, Quasi-ideals and generalized bi-ideals: A new approach to semigroup theory II. Journal of multiple-valued logic and soft computing, 23(1–2), 1-47. https://hdl.handle.net/20.500.12450/637
- [69] Sezer, A. S., Atagün, A. O., & Çağman, N. (2014). N-group SI-action and its applications to N-Group Theory. Fasciculi mathematici, 52, 139–153. https://www.researchgate.net/profile/Aslihan-Sezgin-2/publication/263651539_N-group_SI-action_and_its_application_to_N-group_theory/links/54353a080cf2bf1f1f283279/N-group-SI-action-and-its-application-to-N-group-theory.pdf
- [70] Sezer, A. S., Çağman, N., & Atagün, A. O. (2015). Uni-soft substructures of groups. Annals of fuzzy mathematics and informatics, 9(2), 235–246. http://www.afmi.or.kr/papers/2015/Vol-09_No-02/PDF/AFMI-9-2(235-246)-H-140701R2.pdf
- [71] Atagün, A. O., & Sezer, A. S. (2015). Soft sets, soft semimodules and soft substructures of semimodules. Mathematical sciences letters, 4(3), 235. http://dx.doi.org/10.12785/msl/040303
- [72] Atagün, A. O., & Sezgin, A. (2017). Int-soft substructures of groups and semirings with applications. Applied mathematics & information sciences, 11(1), 105–113. http://dx.doi.org/10.18576/amis/110113
- [73] Tunçay, M., & Sezgin, A. (2016). Soft union ring and its applications to ring theory. International journal of computer applications, 151(9), 7–13. 10.5120/ijca2016911867
- [74] Mustuoglu, E., Sezgin, A., & Türk, Z. K. (2016). Some characterizations on soft uni-groups and normal soft uni-groups. International journal of computer applications, 155(10), 1–8. 10.5120/ijca2016912412
- [75] Sezgin, A. (2016). A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. Algebra lett, 2016, (3), 1–46. https://scik.org/index.php/abl/article/viewFile/2989/1473
- [76] Sezer, A. S., & Atagün, A. O. (2016). A new kind of vector space: Soft vector space. Southeast asian bulletin of mathematics, 40(5), 753–770. https://www.researchgate.net/profile/Aslihan-Sezgin-2/publication/327652370_A_New_Kind_of_Vector_Space_Soft_Vector_Space/links/5b9bbf4092851ca9ed08a807/A-New-Kind-of-Vector-Space-Soft-Vector-Space.pdf
- [77] Sezgin, A., Çağman, N., & Atagün, A. O. (2017). A completely new view to soft intersection rings via soft uni-int product. Applied soft computing, 54, 366–392. https://doi.org/10.1016/j.asoc.2016.10.004
- [78] Khan, A., Izhar, M., & Sezign, A. (2017). Characterizations of abel grassmann’s groupoids by the properties of their double-framed soft ideals. International journal of analysis and applications, 15(1), 62–74. https://doi.org/10.28924/2291-8639
- [79] Gulistan, M., Feng, F., Khan, M., & Sezgin, A. (2018). Characterizations of right weakly regular semigroups in terms of generalized cubic soft sets. Mathematics, 6(12), 293. https://doi.org/10.3390/math6120293
- [80] Atagün, A. O., & Sezgin, A. (2018). A new view to near-ring theory: Soft near-rings. South east asian journal of mathematics & mathematical sciences, 14(3), 1–14. https://rsmams.org/download/articles/2_14_3_1150608629_Paper 1 A new view to near ring theory Soft near rings.pdf
- [81] Mahmood, T., Rehman, Z. U., & Sezgin, A. (2018). Lattice ordered soft near rings. Korean journal of mathematics, 26(3), 503–517. https://doi.org/10.11568/kjm.2018.26.3.503
- [82] Sezgin, A. (2018). A new view on AG-groupoid theory via soft sets for uncertainty modeling. Filomat, 32(8), 2995–3030. https://doi.org/10.2298/FIL1808995S
- [83] Atagün, A. O., & Sezgin, A. (2018). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings. Mathematical sciences letters an international journal, 7(1), 37–42. http://dx.doi.org/10.18576/msl/070106
- [84] Jana, C., Pal, M., Karaaslan, F., & Sezgi̇n, A. (2019). (α, β)-soft intersectional rings and ideals with their applications. New mathematics and natural computation, 15(02), 333-350. https://doi.org/10.1142/S1793005719500182
- [85] Atagun, A., Kamaci, H. I., Tastekin, I., & Sezgin, A. (2019). P-properties in near-rings. Journal of mathematical and fundamental sciences, 51(2), 152–167. http://doi.org/10.5614/j.math.fund.sci.2019.51.2.5
- [86] Sezgin, A. (2020). Soft covered ideals in semigroups. Acta universitatis sapientiae, mathematica, 12(2), 317–346. http://doi.org/10.2478/ausm-2020-0023
- [87] Sezgin, A., Atagün, A. O., Çağman, N., & Demir, H. (2022). On near-rings with soft union ideals and applications. New mathematics and natural computation, 18(02), 495–511. https://doi.org/10.1142/S1793005722500247
- [88] Atagün, A. O., & Sezgin, A. (2022). More on prime, maximal and principal soft ideals of soft rings. New mathematics and natural computation, 18(01), 195–207. https://doi.org/10.1142/S1793005722500119
- [89] Manikantan, T., Ramasany, P., & Sezgin, A. (2023). Soft quasi-ideals of soft near-rings. Sigma journal of engineering and natural science, 41(3), 565–574. https://doi.org/10.14744/sigma.2023.00062
- [90] Riaz, M., Hashmi, M., Karaaslan, F., Sezgin, A., Mohammed, M., & Khalaf, M. (2023). Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. Computer modeling in engineering & sciences, 136(2), 1759. http://dx.doi.org/10.32604/cmes.2023.023327
- [91] Sezgin, A., Şenyiğit, E., & Luzum, M. (2025). A new product for soft sets with its decision-making: Soft Gamma-product. Earthline journal of mathematical sciences, 15(2), 211–234. https://doi.org/10.34198/ejms.15225.211234