Exploring the Strong Metric Dimension of Hollow Coronoid Structures: Applications and Implications

Authors

  • Tahoor Tahoor Department of Mathematics, The Islamia University of Bahawalpur, 63100, Pakistan
  • Muhammad Abid Department of Mathematics, North Carolina State University, Raleigh, 27695 NC, United States
  • Arfa Mushtaq Department of Mathematics, Lahore College for Women University, Lahore 54000, Pakistan
  • Madiha Bibi Department of Mathematics, Rawalpindi Women University, Rawalpindi, Punjab 46300, Pakistan

Keywords:

metric, metric dimension, strong metric dimension, strong resolving graph, vertex cover number

Abstract

Coronoid systems are actually geometric arrangements of six-sided benzenoids in hexagonal form. Coronoid systems are organic chemical structures, that fall into two categories: primitive and catacondensed
coronoids. Many researchers from various fields have an interest in the mathematical analysis of chemicals. Graph theory played an important role in studying chemical structures by transforming them into a graph. The strongιmetricιdimension is one of the main parameter ofιgraph theory. Consider a connectedιgraphιG, aιvertexιu strongly resolves aιpairι(x, y) of vertices if either x lies onιaιshortestιpathιbetween u - y or y lies onιaιshortestιpathιbetween u - x. The setιS is referred as theιstrong resolving set ofιG if any vertex in S can strongly resolve every pair of distinct vertices in G.ιThe minimumιcardinality of such set S is known as the strong metricιdimension ofιG.

References

F. E. Alsaadi, M. Salman, M. Rehman, A. R. Khan, J. Cao and M. O. Alassafi, On the geodesic identification of vertices in

convex plane graphs. Mathematical Problems in Engineering, 2020.

M. Arockiaraj, J. Clement and K. Balasubramanian, Topological indices and their applications to circumcised donut benzenoid

systems, kekulenes and drugs, Polycyclic Aromatic Compounds, 2(40)(2020), 280-303.

M. Arockiaraj, J. Clement and K. Balasubramanian, Topological characterization of coronoid polycyclic aromatic hydrocarbons,

Polycyclic Aromatic Compounds, 3(40)(2018), 784-802.

S. Arumugam and V. Mathew, The fractional metric dimension of graphs, Discrete Mathematics, 9(312)(2012), 1584-1590.

Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ák and L. Shankar Ram, Network discovery and

verification, IEEE Journal on Selected Areas in Communications, 12(24)(2006), 2168-2181.

M. I. Bhat and S. Pirzada. On strong metric dimension of zero-divisor graphs of rings, Korean Journal of Mathematics,

(27)(2019), 563-580.

J. Brunvoll, B.N. Cyvin and S.J. Cyvin, Theory of coronoid hydrocarbons, Springer Science and Business Media, (54)(2012).

J. Brunvoll, B.N. Cyvin and S.J. Cyvin, Topological aspects of benzenoid and coronoids, including snowflakes and laceflowers,

Computers and Mathematics with Applications, 1-3(17)(1989), 355-374.

J. Brunvoll, B.N. Cyvin and S.J. Cyvin, Enumeration and Classification of Coronoid Hydrocarbons, Journal of Chemical

Informations and Computer, 1(27)(1987), 14-21.

J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puerta,C. Seara and D. R. Wood, On the metric dimension of cartesian

products of graphs, SIAM Journal on Discrete Mathematics, 2(21)(2007), 423-441.

G. Chartrand, V. Saenpholphat and P. Zhang, The independent resolving number of a graph, Mathematica Bohemica,

(128)(2003), 379-393.

V. Chvátal, Mastermind, Combinatorica, 3-4(3)(1983), 325-329.

J. R. Dias, The polyhex/polypent topological paradigm: regularities in the isomer numbers and topological properties of select

subclasses of benzenoid hydrocarbons and related systems, Chemical Society Reviews, 6(39)(2010), 1913-1924.

L. Epstein, A. Levin and G. J. Woeginger, The (weighted) metric dimension of graphs: hard and easy cases, Algorithmica,

(72)(2015), 1130-1171.

E. Estaji and J. A. Rodríguez-Velázquez, The strong metric dimension of generalized sierpiński graphs with pendant vertices,

Ars Mathematica Contemporanea, 1(12)(2017), 127-134.

A. Estrada-Moreno, J. A. Rodríguez-Velázquez and I. G. Yero, The k-metric dimension of a graph, Applied Mathematics,

(9)(2015), 2829-2840.

A. Hakanen, V. Junnila and T. Laihonen, The solid-metric dimension, Theoretical Computer Science, 806(2020), 156-170.

F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2(1976), 191-195.

A. Kelenc, D. Kuziak, A. Taranenko and I. G. Yero, Mixed metric dimension of graphs, Applied Mathematics and Computation,

(2017), 429-438.

S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics, 3(70)(1996), 217-229.

A. N. Koam, A. Ahmad, M. E. Abdelhag and M. Azeem, Metric and fault-tolerant metric dimension of hollow coronoid, IEEE

Access, (9)(2021), 81527-81534.

A. N. Koam, A. Ahmad, M. Ibrahim and M. Azeem, Edge metric and fault-tolerant edge metric dimension of hollow coronoid,

Mathematics, 12(9)(2021), 1405.

A. N. Koam, A. Ahmad, S. Husain and M. Azeem, Mixed metric dimension of hollow coronoid structure, Ain Shams Engineering

Journal, 7(14)(2023), 102000.

J. Kratica, V. Kovačević-Vujčić, M. Čangalović and M. Stojanović, Minimal doubly resolving sets and the strong metric

dimension of some convex polytopes, Applied Mathematics and Computation, 19(218)(2012), 9790-9801.

J. Kratica, V. Kovačević-Vujčić, M. Čangalović and M. Stojanović, Minimal doubly resolving sets and the strong metric

dimension of Hamming graphs, Applicable Analysis and Discrete Mathematics, 1(6)(2012), 63-71.

T. A. Kusmayadi, S. Kuntari, D. Rahmadi and F. A. Lathifah, On the strong metric dimension of some related wheel graph,

Far East Journal of Mathematical Sciences (FJMS), 9(99)(2016), 1325-1334.

D. Kuziak, M. L. Puertas, J. A. Rodríguez-Velázquez and I. G. Yero, Strong resolving graphs: the realization and the

characterization problems, Discrete Applied Mathematics, 236(2018), 270-287.

D. Kuziak, I. Peterin and I. G. Yero, Resolvability and strong resolvability in the direct product of graphs, Results in

Mathematics, 1(71)(2017), 509-526.

D. Kuziak, J. A. Rodríguez-Velázquez and I. G. Yero, Closed formulae for the strong metric dimension of lexicographic product

graphs, Discussiones Mathematicae Graph theory, 4(36)(2016), 1051-1064.

D. Kuziak, I. G. Yero and J. A. Rodríguez-Velázquez, Strong metric dimension of rooted product graphs, International Journal

of Computer Mathematics, 8(93)(2016), 1265-1280.

D. Kuziak, I. G. Yero and J. A. Rodríguez-Velázquez, On the strong metric dimension of cartesian sum graphs, Fundamenta

Informaticae, 1(141)(2015), 57-69.

D. Kuziak, I. G. Yero and J. A. Rodríguez-Velázquez, On the strong metric dimension of the strong products of graphs, Open

Mathematics, 13(2015), 64-74.

D. Kuziak, I. G. Yero and J. A. Rodríguez-Velázquez, On the strong metric dimension of corona product graphs and join

graphs, Discrete Applied Mathematics, 7-8(161)(2013), 1022-1027.

X. Ma, M. Feng and K. Wang, The strong metric dimension of the power graph of a finite group, Discrete Applied Mathematics,

(2018), 159-164.

T. R. May and O. R. Oellermann, The strong dimension of distance-hereditary graphs, Journal of Combinatorial Mathematics

and Combinatorial Computing, 76(2011), 59-73.

R. Y. Mayasari and T. A. Kusmayadi, On the strong metric dimension of generalized butterfly graph, starbarbell graph and

Cm ⊙ Pn graph, Journal of Physics: Conference Series, 1008(2018).

R.A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics and Image Processing, 1(25)(1984),

?121.

Y. Mintarsih and T. A. Kusmayadi, On the strong metric dimension of antiprism graph, king graph, and Km ⊙ Kn graph,

Journal of Physics: Conference Series, 1008(2018).

O. R. Oellermann and J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Applied Mathematics,

(155)(2007), 356-364.

F. Okamoto, B. Phinezy and P. Zhang, The local metric dimension of a graph, Mathematica Bohemica, 3(135)(2010), 239-255.

J. A. Rodríguez-Velázquez, I. G. Yero, D. Kuziak and O. R. Oellermann, On the strong metric dimension of cartesian and

direct products of graphs, Discrete Mathematics, 335(2014), 8-19.

V. Saenpholphat and P. Zhang, Connected resolving sets in graphs, Ars Combinatoria, 68(2003), 3-16.

M. Salman, I. Javaid and M. A. Chaudhry, Minimum fault-tolerant, local and strong metric dimension of graphs, Ars

Combinatoria, 138(2018), 333-353.

P. Sarkar, A. Pal, and N. De, The (a, b)-Zagreb index of line graphs of subdivisiongraphs of some molecular structures,

International Journal of Mathematics for Industry, 1(12)(2020).

A. Sebö and E. Tannier, On metric generators of graphs, Mathematics of Operations Research, 2(29)(2004), 383-393.

H. S. Shapiro and S. Söderberg, A combinatory detection problem, The American Mathematical Monthly,10(70)(1963),

-1070.

P. J. Slater, Leaves of trees, Congressus Numerantium, 14(1975), 549-559.

B. D. West, Introducton to graph theory, 2nd edition, Englewood Cliff, NJ: Prentice-Hall, 2000.

M. Widyaningrum and T. A. Kusmayadi, On the strong metric dimension of sun graph, windmill graph, and m¨obius ladder

graph, Journal of Physics: Conference Series, 1008(2018).

E. Yi, On strong metric dimension of graphs and their complements, Acta Mathematics Sinica, English Series, 8(29)(2013),

-1492.

A. Yunitasari and T. A. Kusmayadi, On the strong metric dimension of crossed prism graph and edge corona of cycle with path

graph, Journal of Physics: Conference Series, 1306(2019).

Meharunnisa, Saqlain, M., Abid, M., Awais, M., and Stević, Ž. Analysis of software effort estimation by machine learning

techniques. Ingénierie des Systèmes d’Information, 28(2023), 1445-1457.

Rehman, N., Abid, M., & Qamar, S. (2021). Numerical approximation of nonlinear and non-equilibrium model of gradient

elution chromatography, Journal of Liquid Chromatography & Related Technologies, 44:7-8, 382-394.

Garba Ahmad Abdulaziz, Kaabar Mohammed KA, Rashid Saima, Abid Muhammad.A novel numerical treatment of nonlinear

and nonequilibrium model of gradientelution chromatography considering core- shell particles in the column. Math Probl Eng.

;2022:1619702.

Abid, M. & Saqlain, M. (2023). Utilizing Edge Cloud Computing and Deep Learning for Enhanced Risk Assessment in China’s

International Trade and Investment. Int J. Knowl. Innov Stud., 1(1), 1-9.

Haq, H. B. U., Akram, W., Irshad, M. N., Kosar, A., & Abid, M. (2024). Enhanced Real-Time Facial Expression Recognition

Using Deep Learning. Acadlore Trans. Mach. Learn., 3(1), 24-35.

Abid, M., Saqlain, M. (2023). Decision-Making for the Bakery Product Transportation using Linear Programming. Spectrum

of Engineering and Management Sciences, 1(1), 1-12.

M. Abid, M. Bibi, N. Yasin, & M. Shahid, (2024). A Novel Computational Analysis of Boundary Driven Two Dimensional Heat

Flow with the Internal Heat Generation. Computational Algorithms and Numerical Dimensions.

Published

2024-04-12

How to Cite

Exploring the Strong Metric Dimension of Hollow Coronoid Structures: Applications and Implications. (2024). Complexity Analysis and Applications, 1(1), 1-13. https://caa.reapress.com/journal/article/view/18