Computational Study on Valve Lift Dynamics and Stoichiometric Behaviour of Four-Stroke Renault IC Engine Process

Authors

  • Aniekan Essienubong Ikpe Department of Mechanical Engineering, Akwa Ibom State Polytechnics, Ikot Osurua, Ikot Ekpene, Nigeria‎.
  • Imoh Ime Ekanem Department of Mechanical Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria‎.
  • Enefiok Okon Usungurua Department of Mechanical Engineering, School of Engineering and Engineering Technology, Federal University of Technology, Ikot ‎Abasi, Nigeria.

Keywords:

Friction stir welding, Manufacturing industries, Metal joining, Product performance

Abstract

In this research, a computational study of valve lift dynamics and stoichiometric behaviour was carried out to determine the efficiency and power output of a four-stroke Renault IC engine. The CAD model profile of the IC engine was developed using SOLIDWORKS software, which was later imported into ANSYS Fluent version 15.0 as a geometry saved in the Initial Graphics Exchange Specification (IGES) file format to enable the simulation process. The valve lift profiles were varied to study their impact on the engine's performance. From the simulation profile, a maximum in-cylinder combustion temperature of 841 oC occurred when the engine ran at idle load. However, a maximum in-cylinder temperature of 2254 oC was observed when the engine operated at full load. The maximum flame development phase at variable valve lift openings (ranging from 5-13 mm) was 36, while the maximum in-cylinder flame propagation phase was 42, leading to a volumetric efficiency of 0.822%. The plotted simulation results indicated that increased valve lift opening allowed more air-fuel entry into the combustion chamber, resulting in increased flow coefficient and enhanced engine performance. The relationship between engine speed and volumetric efficiency at various valve lift openings typically illustrated a curve that began at zero volumetric efficiencies when the engine was in idle mode and the valves closed. The volumetric efficiency gradually increased as the valve opened and attained a peak value of 0.904% when the valve was fully open at 13 mm and an engine speed of 3000 rpm. The relationship between engine speed and Specific Fuel Consumption (SFC) at various valve lift openings revealed that, as the valve lift opening increased, the air-fuel mixture entering the combustion chamber also increased. This led to higher power output as well as higher fuel consumption, as more fuel is required to maintain the combustion process at higher power levels or engine speed. However, excessive valve lift opening can increase turbulence and heat losses, reducing the engine's efficiency. The relationship between engine speed and indicated power at various valve lift openings revealed that increasing engine speed led to increasing power output from the engine up to a certain point where the engine reached its maximum power output.

References

‎[1] ‎ Balmelli, M., Zsiga, N., Merotto, L., & Soltic, P. (2020). Effect of the intake valve lift and closing angle ‎on part load efficiency of a spark ignition engine. Energies, 13(7), 1682. ‎https://doi.org/10.3390/en13071682‎

‎[2] ‎ Wang, J., Duan, X., Wang, W., Guan, J., Li, Y., & Liu, J. (2021). Effects of the continuous variable valve ‎lift system and Miller cycle strategy on the performance behavior of the lean-burn natural gas spark ‎ignition engine. Fuel, 297, 120762. https://doi.org/10.1016/j.fuel.2021.120762‎

‎[3] ‎ Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., ... & Zhao, H. (2020). The ‎future of the internal combustion engine. International journal of engine research, 21(1), 3-10.‎

‎[4] ‎ Castro, D. M., & Silv Parreiras, F. (2021). A review on multi-criteria decision-making for energy ‎efficiency in automotive engineering. Applied computing and informatics, 17(1), 53–78. ‎https://doi.org/10.1016/j.aci.2018.04.004‎

‎[5] ‎ Badra, J. A., Khaled, F., Tang, M., Pei, Y., Kodavasal, J., Pal, P., … & Aamir, F. (2021). Engine ‎combustion system optimization using computational fluid dynamics and machine learning: a ‎methodological approach. Journal of energy resources technology, 143(2), 22306. ‎https://doi.org/10.1115/1.4047978‎

‎[6] ‎ Iranzo, A. (2019). CFD applications in energy engineering research and simulation: an introduction to ‎published reviews. Processes, 7(12), 883. https://doi.org/10.3390/pr7120883‎

‎[7] ‎ Rakopoulos, D. C. (2021). Effects of exhaust gas recirculation under fueling rate or air/fuel ratio--‎controlled strategies on diesel engine performance and emissions by two-zone combustion modeling. ‎Journal of energy engineering, 147(1), 4020079. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000729‎

‎[8] ‎ Aliramezani, M., Koch, C. R., & Shahbakhti, M. (2022). Modeling, diagnostics, optimization, and ‎control of internal combustion engines via modern machine learning techniques: A review and future ‎directions. Progress in energy and combustion science, 88, 100967. ‎https://doi.org/10.1016/j.pecs.2021.100967‎

‎[9] ‎ Yang, X., Keum, S., & Kuo, T.-W. (2016). Effect of valve opening/closing setup on computational fluid ‎dynamics prediction of engine flows. Journal of engineering for gas turbines and power, 138(8), 81503. ‎https://doi.org/10.1115/1.4032342‎

‎[10] ‎ Sawant, P., & Bari, S. (2018). Effects of variable intake valve timings and valve lift on the performance and fuel ‎efficiency of an internal combustion engine. https://doi.org/10.4271/2018-01-0376‎

‎[11] ‎ Babagiray, M., Kocakulak, T., Ardebili, S. M. S., Solmaz, H., Çınar, C., & Uyumaz, A. (2022). ‎Experimental and statistical investigation of different valve lifts on HCCI combustion, performance ‎and exhaust emissions using response surface method. Energy, 244, 123184. ‎https://doi.org/10.1016/j.energy.2022.123184‎

‎[12] ‎ Bayramoğlu, K., Yilmaz, S., & Kaya, K. D. (2019). Numerical investigation of valve lifts effects on ‎performance and emissions in diesel engine. International journal of global warming, 18(3–4), 287–303. ‎https://doi.org/10.1504/IJGW.2019.101088‎

‎[13] ‎ Mokrane, C., Adouane, B., & Benzaoui, A. (2018). Composition and stoichiometry effects of biogas as ‎fuel in spark ignition engine. International journal of automotive and mechanical engineering, 15(1), 5036–‎‎5052. https://doi.org/10.15282/ijame.15.1.2018.11.0390‎

‎[14] ‎ Costa, M., Catapano, F., Sementa, P., Sorge, U., & Vaglieco, B. M. (2016). Mixture preparation and ‎combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical ‎study on an optically accessible engine. Applied energy, 180, 86–103. ‎https://doi.org/10.1016/j.apenergy.2016.07.089‎

‎[15] ‎ Houshfar, E., Skreiberg, Ø., Løvås, T., Todorović, D., & Sørum, L. (2011). Effect of excess air ratio and ‎temperature on NOx emission from grate combustion of biomass in the staged air combustion ‎scenario. Energy & fuels, 25(10), 4643–4654. https://doi.org/10.1021/ef200714d‎

‎[16] ‎ Al-Arkawazi, S. A. F. (2019). Analyzing and predicting the relation between air--fuel ratio (AFR), ‎lambda ($λ$) and the exhaust emissions percentages and values of gasoline-fueled vehicles using ‎versatile and portable emissions measurement system tool. SN applied sciences, 1(11), 1370. ‎https://doi.org/10.1007/s42452-019-1392-5‎

‎[17] ‎ Chen, Z., Liao, B., Yu, Y., & Qin, T. (2022). Effect of equivalence ratio on spark ignition combustion of ‎an air-assisted direct injection heavy-fuel two-stroke engine. Fuel, 313, 122646. ‎https://doi.org/10.1016/j.fuel.2021.122646‎

‎[18] ‎ Manivannan, P. V, Singaperumal, M., & Ramesh, A. (2014). A new method for measurement of air--‎fuel ratio based on the response time of binary-type exhaust gas oxygen (BEGO) sensor for application ‎in small spark ignition (SI) engines. Transactions of the institute of measurement and control, 36(2), 175–183. ‎https://doi.org/10.1177/0142331213493803‎

‎[19] ‎ Bérubé, Y., Ghazanfari, A., Blanchette, H. F., Perreault, C., & Zaghib, K. (2020). Recent advances in ‎wide bandgap devices for automotive industry. IECON 2020 the 46th annual conference of the ieee ‎industrial electronics society (pp. 2557–2564). IEEE.‎

‎[20] ‎ Maroteaux, D., Le Guen, D., & Chauvelier, E. (2015). Development of a fuel economy and co 2 simulation ‎platform for hybrid electric vehicles-application to renault eolab prototype. https://doi.org/10.4271/2015-24-2543‎

‎[21] ‎ Laget, O., Richard, S., Serrano, D., & Soleri, D. (2012). Combining experimental and numerical ‎investigations to explore the potential of downsized engines operating with methane/hydrogen ‎blends. International journal of hydrogen energy, 37(15), 11514–11530. ‎https://doi.org/10.1016/j.ijhydene.2012.03.153‎

‎[22] ‎ Netzer, C., Pasternak, M., Seidel, L., Ravet, F., & Mauss, F. (2020). Computationally efficient prediction ‎of cycle-to-cycle variations in spark-ignition engines. International journal of engine research, 21(4), 649–‎‎663. https://doi.org/10.1177/1468087419856493‎

‎[23] ‎ Ikpe, A., & Bassey, M. (2024). Computational fluid dynamics of four stroke in-cylinder charge ‎behavior at distinct valve lift opening clearance in spark ignition reciprocating internal combustion ‎renault engine. International journal of automotive science and technology, 8(1), 1–22. ‎https://doi.org/10.30939/ijastech..1337386‎

‎[24] ‎ Clenci, A., Bîzîiac, A., Podevin, P., Descombes, G., Deligant, M., & Niculescu, R. (2013). Idle operation ‎with low intake valve lift in a port fuel injected engine. Energies, 6(6), 2874–2891. ‎https://doi.org/10.3390/en6062874‎

‎[25] ‎ Ikpe, A. (2020). Design analysis of reciprocating piston for single cylinder internal combustion engine. ‎International journal of automotive science and technology, 4(2), 30–39. ‎https://doi.org/10.30939/ijastech..702219‎

‎[26] ‎ Ikpe, A. E., & Owunna, I. B. (2022). Modelling the performance characteristics of four stroke internal ‎combustion renault engine cycle using matlab simulation tool. ARID zone journal of engineering, ‎technology and environment, 18(2), 267–280.‎

‎[27] ‎ Kumar, H., & Jayashankar, N. (2015). Port flow simulation of an IC engine. International journal of ‎innovations in engineering research and technology, 2(9), 1–9.‎

‎[28] ‎ Akele, S. M. G., Aganama, C., Emeka, E., Abudu-Mimini, Y., Umukoro, S., & Raymond, O. (2020). CFD ‎port flow simulation of air flow rate in spark ignition engine. International journal of engineering and ‎management research (IJEMR), 10(6), 87–95. http://dx.doi.org/10.31033/ijemr.10.6.13‎

‎[29] ‎ Ikpe, A. E., Owunna, I. B., & John, P. O. (2021). Port flow simulation and in-cylinder swirl motion ‎characteristic effects in internal combustion engine duty cycle. Applications of modelling and simulation, 5, ‎‎102–114. http://arqiipubl.com/ojs/index.php/AMS_Journal/article/view/254‎

‎[30] ‎ Essienubong, I. A., & Bismarck, O. I. (2021). Simulation of mass and pressure dynamics of in-cylinder ‎charges at variable valve lift clearance in four stroke spark ignition engine. Advances in engineering ‎design technology, 3, 115–131. https://doi.org/10.37933/nipes.a/3.2.2021.‎

‎[31] ‎ Schneiderbauer, S., & Krieger, M. (2013). What do the Navier--Stokes equations mean? European journal ‎of physics, 35(1), 15020. DOI:10.1088/0143-0807/35/1/015020‎

‎[32] ‎ Kumar, M., & Kumar, R. (2014). On some new exact solutions of incompressible steady state Navier-‎Stokes equations. Meccanica, 49, 335–345.‎

‎[33] ‎ Hamlington, P. E., & Ihme, M. (2014). Modeling of non-equilibrium homogeneous turbulence in ‎rapidly compressed flows. Flow, turbulence and combustion, 93, 93–124. https://doi.org/10.1007/s10494-‎‎014-9535-7‎

‎[34] ‎ Hamel, J. M., Allphin, D., & Elroy, J. (2018). Multi-objective optimization model development to ‎support sizing decisions for a novel reciprocating steam engine technology. Journal of energy resources ‎technology, 140(7), 72204. https://doi.org/10.1115/1.4039611‎

‎[35] ‎ Dresback, K. M., Kolar, R. L., & Dietrich, J. C. (2005). On the form of the momentum equation for ‎shallow water models based on the generalized wave continuity equation. Advances in water resources, ‎‎28(4), 345–358. https://doi.org/10.1016/j.advwatres.2004.11.011‎

‎[36] ‎ Moran, M. J., Shapiro, H. N., Munson, B. R., & DeWitt, D. P. (2002). Introduction to thermal systems ‎engineering: thermodynamics, fluid mechanics, and heat transfer. John Wiley & Sons.‎

‎[37] ‎ Raju, K. S. (2011). Fluid mechanics, heat transfer, and mass transfer: chemical engineering practice. John Wiley ‎& Sons.‎

‎[38] ‎ Caltagirone, J. P. (2024). An alternative to the Navier--Stokes equation based on the conservation of ‎acceleration. Journal of fluid mechanics, 978, A21. https://doi.org/10.1017/jfm.2023.1017‎

‎[39] ‎ Hjelmstad, K. D., & Hjelmstad, K. D. (2022). Foundations of dynamics. In Fundamentals of structural ‎dynamics: theory and computation (pp. 1–21). Springer.‎

‎[40] ‎ Banaeizadeh, A., Afshari, A., Schock, H., & Jaberi, F. (2013). Large-eddy simulations of turbulent flows ‎in internal combustion engines. International journal of heat and mass transfer, 60, 781–796. ‎https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.065‎

‎[41] ‎ Giannakopoulos, G. K., Frouzakis, C. E., Boulouchos, K., Fischer, P. F., & Tomboulides, A. G. (2017). ‎Direct numerical simulation of the flow in the intake pipe of an internal combustion engine. ‎International journal of heat and fluid flow, 68, 257–268. https://doi.org/10.1016/j.ijheatfluidflow.2017.09.007‎

‎[42] ‎ Ibrahim, A., & Bari, S. (2009). Effect of varying compression ratio on a natural gas SI engine ‎performance in the presence of EGR. Energy & fuels, 23(10), 4949–4956. ‎https://doi.org/10.1021/ef900452q

‎[43] ‎ Winterbone, D. E., & Yoshitomi, M. (1990). The accuracy of calculating wave action in engine intake ‎manifolds. https://doi.org/10.4271/900677‎

‎[44] ‎ Chalet, D., Mahe, A., Migaud, J., & Hetet, J. F. (2011). A frequency modelling of the pressure waves in ‎the inlet manifold of internal combustion engine. Applied energy, 88(9), 2988–2994. ‎https://doi.org/10.1016/j.apenergy.2011.03.036‎

‎[45] ‎ Ikpe, A. E., & Owunna, I. B. (2020). A 3D modelling of the in-cylinder combustion dynamics of two ‎stroke internal combustion engine in its service condition. Nigerian journal of technology, 39(1), 161–172. ‎https://doi.org/10.4314/njt.v39i1.18‎

‎[46] ‎ Owunna, I. B., & Ikpe, A. E. (2021). Comparative analysis of four stroke and six stroke internal ‎combustion renault engine efficiency using matlab simulation tool. Nigerian journal of engineering, ‎‎28(3), 62–69.‎

‎[47] ‎ Ramachandran, S. (2009). Rapid thermodynamic simulation model of an internal combustion engine ‎on alternate fuels. Proceedings of the international multiconference of engineers and computer scientists (Vol. ‎‎2, pp. 2146–2151). SN.‎

‎[48] ‎ Ferguson, C. R., & Kirkpatrick, A. T. (2015). Internal combustion engines: applied thermosciences. John ‎Wiley & Sons.‎

‎[49] ‎ Essienubong, I. A., Ikechukwu, O., & Paul, S. (2018). Finite element analysis of aircraft tire behaviour ‎under overloaded aircraft landing phase. Aeron aero open access journal, 2(1), 32–37.‎

‎[50] ‎ Blocken, B. (2015). Computational fluid dynamics for urban physics: importance, scales, possibilities, ‎limitations and ten tips and tricks towards accurate and reliable simulations. Building and environment, ‎‎91, 219–245. https://doi.org/10.1016/j.buildenv.2015.02.015‎

‎[51] ‎ Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid ‎dynamics. Progress in aerospace sciences, 38(3), 209–272. https://doi.org/10.1016/S0376-0421(02)00005-2‎

‎[52] ‎ Khaled, M. F., Aly, A. M., & Elshaer, A. (2021). Computational efficiency of CFD modeling for ‎building engineering: An empty domain study. Journal of building engineering, 42, 102792. ‎https://doi.org/10.1016/j.jobe.2021.102792‎

‎[53] ‎ Tezzele, M., Demo, N., Stabile, G., Mola, A., & Rozza, G. (2020). Enhancing CFD predictions in shape ‎design problems by model and parameter space reduction. Advanced modeling and simulation in ‎engineering sciences, 7, 1–19. https://doi.org/10.1186/s40323-020-00177-y%0A%0A

‎[54] ‎ Ravi, K., Bhasker, J. P., & Porpatham, E. (2017). Effect of compression ratio and hydrogen addition on ‎part throttle performance of a LPG fuelled lean burn spark ignition engine. Fuel, 205, 71–79. ‎https://doi.org/10.1016/j.fuel.2017.05.062‎

‎[55] ‎ Abdullah, N. R., Shahruddin, N. S., Mamat, R., Mamat, A. M. I., & Zulkifli, A. (2014). Effects of air ‎intake pressure on the engine performance, fuel economy and exhaust emissions of a small gasoline ‎engine. Journal of mechanical engineering and sciences, 6, 949–958. ‎https://doi.org/10.15282/jmes.6.2014.21.0091‎

‎[56] ‎ Raghuram, P., Ramkumar, P., Sreenivasan, M., & Puhan, S. (2012). Air-fuel ratio calculations in an ‎internal combustion engine based on the cylinder pressure measurements. International journal of ‎engineering research and applications, 2(6), 1378–1385.‎

‎[57] ‎ Ikpe, A. E., Bassey, M. O., & David, V. O. (2023). Computation of in-cylinder transient thermodynamics and ‎valve lift effects on four stroke reciprocating piston internal combustion engine [presentation]. 3th ‎international liberty interdisciplinary conference. https://www.researchgate.net/profile/Michael-‎Bassey-4/publication/367360917_COMPUTATION_OF_IN-‎CYLINDER_TRANSIENT_THERMODYNAMIC_conference/links/63cf6cd9e922c50e99bb53a1/COMPUTATION-OF-IN-CYLINDER-TRANSIENT-THERMODYNAMIC-conference.pdf

‎[58] ‎ Hosseini, A. A., Ghodrat, M., Moghiman, M., & Pourhoseini, S. H. (2020). Numerical study of inlet air ‎swirl intensity effect of a methane-air diffusion flame on its combustion characteristics. Case studies in ‎thermal engineering, 18, 100610. https://doi.org/10.1016/j.csite.2020.100610‎

‎[59] ‎ Millo, F., Luisi, S., Borean, F., & Stroppiana, A. (2014). Numerical and experimental investigation on ‎combustion characteristics of a spark ignition engine with an early intake valve closing load control. ‎Fuel, 121, 298–310. https://doi.org/10.1016/j.fuel.2013.12.047‎

‎[60] ‎ Bonnick, A., Newbold, D., & Dennis, K. (2006). Fuel systems. In A practical approach to motor vehicle ‎engineering and maintenance (pp. 95–137). Routledge.‎

‎[61] ‎ Yaliwal, V. S., Banapurmath, N. R., Gireesh, N. M., Hosmath, R. S., Donateo, T., & Tewari, P. G. (2016). ‎Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on ‎dual fuel mode using renewable fuels. Renewable energy, 93, 483–501. ‎https://doi.org/10.1016/j.renene.2016.03.020‎

‎[62] ‎ Yan, B., Wang, H., Zheng, Z., Qin, Y., & Yao, M. (2018). The effect of combustion chamber geometry on ‎in-cylinder flow and combustion process in a stoichiometric operation natural gas engine with EGR. ‎Applied thermal engineering, 129, 199–211. https://doi.org/10.1016/j.applthermaleng.2017.09.067‎

‎[63] ‎ Janulevičius, A., Juostas, A., & Pupinis, G. (2013). Engine performance during tractor operational ‎period. Energy conversion and management, 68, 11–19. https://doi.org/10.1016/j.enconman.2013.01.001‎

‎[64] ‎ Papagiannakis, R. G., Rakopoulos, C. D., Hountalas, D. T., & Rakopoulos, D. C. (2010). Emission ‎characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of ‎natural gas/diesel fuel proportions. Fuel, 89(7), 1397–1406. https://doi.org/10.1016/j.fuel.2009.11.001‎

‎[65] ‎ Masi, M., & Gobbato, P. (2012). Measure of the volumetric efficiency and evaporator device ‎performance for a liquefied petroleum gas spark ignition engine. Energy conversion and management, ‎‎60, 18–27. https://doi.org/10.1016/j.enconman.2011.11.030‎

‎[66] ‎ Elavarasan, G., Kannan, M., & Karthikeyan, D. (2019). Experimental analysis to find the optimum ‎specific fuel consumption for driver’s intimation. International journal of recent technology and ‎engineering, 8(2), 452–456. DOI:10.35940/ijrte.B1517.078219‎

‎[67] ‎ Saputro, E. A., & Saputro, W. (2022). Analysis of combustion temperature on specific fuel consumption ‎‎(SFC) of Diesel engines using b30 fuel in the long term performance. Nusantara science and technology ‎proceedings, 22, 362–366. https://doi.org/10.11594/nstp.2022.2754‎

‎[68] ‎ Jia, B., Tian, G., Feng, H., Zuo, Z., & Roskilly, A. P. (2015). An experimental investigation into the ‎starting process of free-piston engine generator. Applied energy, 157, 798–804. ‎https://doi.org/10.1016/j.apenergy.2015.02.065‎

‎[69] ‎ Jia, B., Smallbone, A., Zuo, Z., Feng, H., & Roskilly, A. P. (2016). Design and simulation of a two-or ‎four-stroke free-piston engine generator for range extender applications. Energy conversion and ‎management, 111, 289–298. https://doi.org/10.1016/j.enconman.2015.12.063‎

Published

2024-08-20

How to Cite

Computational Study on Valve Lift Dynamics and Stoichiometric Behaviour of Four-Stroke Renault IC Engine Process. (2024). Complexity Analysis and Applications, 1(1), 45-65. https://caa.reapress.com/journal/article/view/27