The unfolding dialectic: Human and artificial intelligence, broad challenges, and prospects for tomorrow

Authors

https://doi.org/10.48314/caa.vi.38

Abstract

The relentless progress of Artificial Intelligence (AI) has sparked a profound and enduring debate: which form of intelligence, human or artificial, is superior? This paper navigates this complex question, not by seeking a definitive victor, but by undertaking a comparative analysis of the distinct characteristics of human and AI. It explores the foundational cognitive architectures that underpin both, delves into the enigmatic nature of consciousness, and examines the formidable open challenges confronting the pursuit of Artificial General Intelligence (AGI). Ultimately, this paper argues that the future lies not in a contest of supremacy, but in the synergistic potential of human-AI collaboration, a prospect that promises to redefine the boundaries of knowledge and innovation.       

Keywords:

Human, Artificial intelligence, Artificial general intelligence, Consciousness

References

  1. [1] Cohen, Y., Engel, T. A., Langdon, C., Lindsay, G. W., Ott, T., Peters, M. A. K., …& Ramaswamy, S. (2022). Recent advances at the interface of neuroscience and artificial neural networks. Journal of neuroscience, 42(45), 8514–8523. https://doi.org/10.1523/JNEUROSCI.1503-22.2022

  2. [2] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., … & Silver, D. (2020). Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839), 604–609. https://doi.org/10.1038/s41586-020-03051-4

  3. [3] Tian, S., Li, W., Ning, X., Ran, H., Qin, H., & Tiwari, P. (2023). Continuous transfer of neural network representational similarity for incremental learning. Neurocomputing, 545, 126300. https://doi.org/10.1016/j.neucom.2023.126300

  4. [4] A Mageed, I., & Nazir, A. R. (2025). AI-generated abstract expressionism inspiring creativity through Ismail A Mageed’s internal monologues in poetic form. https://doi.org/10.20944/preprints202501.0425.v1

  5. [5] A Mageed, I. (2024). Entropic artificial intelligence and knowledge transfer. Advances in machine learning & artificial intelligence, 5(2), 1–8. https://B2n.ir/td6327

  6. [6] A Mageed, I. (2024). Ismail’s threshold theory to master perplexity AI. Management analytics and social insights, 1(2), 223–234. https://doi.org/10.22105/kfyyze86

  7. [7] A Mageed, I. (2024). On the Rényi entropy functional, Tsallis distributions and Lévy stable distributions with entropic applications to machine learning. Soft computing fusion with applications, 1(2), 90–101. https://doi.org/10.22105/scfa.v1i2.33

  8. [8] A Mageed, I. (2024). Information data length theory of human emotions, how, what and why. https://doi.org/10.20944/preprints202403.0557.v1

  9. [9] A Mageed, I. (2025). Surpassing beyond boundaries: Open mathematical challenges in AI-driven robot control. https://doi.org/10.20944/preprints202505.2456.v1

  10. [10] A Mageed, I. (2025). The hidden mathematics to treat cancer, innovative mathematics to unlock life mysteries. Computational algorithms and numerical dimensions, 4(2), 106–144. https://doi.org/10.22105/cand.2025.512116.1195

  11. [11] A Mageed, I., Bhat, A. H., & Alja’am, J. (2024). Shallow learning vs. deep learning in social applications. In Shallow learning vs. deep learning: A practical guide for machine learning solutions (pp. 93–114). Springer. https://doi.org/10.1007/978-3-031-69499-8_4

  12. [12] A Mageed, I., Bhat, A. H., & Edalatpanah, S. A. (2024). Shallow learning vs. deep learning in finance, marketing, and e-commerce. In Shallow learning vs. deep learning: A practical guide for machine learning solutions (pp. 77–91). Springer. https://doi.org/10.1007/978-3-031-69499-8_3

  13. [13] A Mageed, I., Bhat, A. H., & Rehman, H. U. (2024). Shallow learning vs. deep learning in anomaly detection applications. In Shallow learning vs. deep learning: A practical guide for machine learning solutions (pp. 157–177). Springer. https://doi.org/10.1007/978-3-031-69499-8_7

  14. [14] Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2023). Dive into deep learning. Cambridge University Press. https://B2n.ir/dh2218

  15. [15] Thompson, N. C., Greenewald, K., Lee, K., Manso, G. F. (2020). The computational limits of deep learning. https://doi.org/10.21428/bf6fb269.1f033948

  16. [16] Del Pin, S. H., Skóra, Z., Sandberg, K., Overgaard, M., & Wierzchoń, M. (2021). Comparing theories of consciousness: Why it matters and how to do it. Neuroscience of consciousness, 2021(2), 1–8. https://doi.org/10.1093/nc/niab019

  17. [17] Seth, A. K. (2024). Conscious artificial intelligence and biological naturalism. https://doi.org/10.1017/S0140525X25000032

  18. [18] Chang, A. Y. C., Biehl, M., Yu, Y., & Kanai, R. (2020). Information closure theory of consciousness. Frontiers in psychology, 11, 1504. https://doi.org/10.3389/fpsyg.2020.01504

  19. [19] Feinberg, T. E., & Mallatt, J. M. (2025). Consciousness demystified. MIT Press. https://B2n.ir/zb2656

  20. [20] Summerfield, C. (2023). Natural general intelligence: How understanding the brain can help us build AI. Oxford university press. https://B2n.ir/wu6761

  21. [21] Mastrogiorgio, A., & Palumbo, R. (2025). Superintelligence, heuristics and embodied threats. Mind & society, 24, 1–15. https://doi.org/10.1007/s11299-025-00317-0

  22. [22] Wang, J., Chen, W., Xiao, X., Xu, Y., Li, C., Jia, X., & Meng, M. Q. H. (2021). A survey of the development of biomimetic intelligence and robotics. Biomimetic intelligence and robotics, 1, 100001. https://doi.org/10.1016/j.birob.2021.100001

  23. [23] Kim, J. Z., & Bassett, D. S. (2023). A neural machine code and programming framework for the reservoir computer. Nature machine intelligence, 5(6), 622–630. https://doi.org/10.1038/s42256-023-00668-8

Published

2025-03-08

How to Cite

A Mageed, I. . (2025). The unfolding dialectic: Human and artificial intelligence, broad challenges, and prospects for tomorrow. Complexity Analysis and Applications, 2(1), 65-70. https://doi.org/10.48314/caa.vi.38