Generalized Weighted Chris-Jerry Distribution: Properties and Applications
Keywords:
Generalized Weighted Chris-Jerry distribution, Length-Biased Chris-Jerry distribution, Cancer, Mortality Rate, Goodness of FitAbstract
This study is a generalization of the length-biased and weighted Chris-Jerry distribution. It introduces an additional scale parameter to make the distribution more flexible. The functional form of the distribution which includes the density function, the distribution function, the survival function and the hazard function together with their plots were presented. The study also encapsulates the characteristics of the model with the estimation of the parameters using the maximum likelihood method. The applicability was demonstrated using data on remission times of a sample of 128 bladder cancer patients, mortality rate of children in Japan and Ireland under the age of five. The results validate that the model is apt in describing real life events.
References
Tesfalem, E., Shanker, R. (2019). A Two-Parameter Weighted Rama Distribution with Properties and Application. Universal Journal of Mathematics and Applications, 2(2), 48–58.
Kayid, M., Al-Nahawati, H., Ahmad, I. A. (2011). Testing behavior of the reversed hazard rate. Applied Mathematical Modelling, 35(5), 2508–2515. Elsevier.
Kharazmi, O., Mahdavi, A., Fathizadeh, M. (2015). Generalized weighted exponential distribution. Communications in Statistics-Simulation and Computation, 44(6), 1557–1569. Taylor Francis.
Ramos, P. L., Louzada, F. (2016). The generalized weighted Lindley distribution: Properties, estimation, and applications. Cogent Mathematics, 3(1), 1256022. Taylor Francis.
Lee, E. T., Wang, J. (2003). Statistical methods for survival data analysis. (Vol. 476). John Wiley Sons.
Subramanian, C., Subhashree, M. (2024). A new extension of Chris-Jerry distribution with its properties. Journal of Applied Mathematics, Statistics and Informatics, 20(1), 5–16.
Praseeja, C. B., Prasanth, C. B., Subramanian, C., Unnikrishnan, T. (2024). Characteristics of Srimin-H distribution and its biomedical application. JP Journal of Biostatistics, 24(1), 47–60.
Abbas, S., Ozal, G., Shahbaz, S. H., Shahbaz, M. Q. (2019). A new generalized weighted Weibull distribution. Pakistan Journal of Statistics and Operation Research, 161–178. College of Statistical and Actuarial Sciences.
Kharazmi, O. (2016). Generalized weighted Weibull distribution. Journal of Mathematical Extension, 10, 89–118.
Beaulieu, N. C. (1991). On the generalized multinomial distribution, optimal multinomial detectors, and generalized weighted partial decision detectors. IEEE Transactions on Communications, 39(2), 193–194. IEEE.
Domma, F., Condino, F., Popović, B. V. (2017). A new generalized weighted Weibull distribution with decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate. Journal of Applied Statistics, 44(16), 2978–2993. Taylor Francis.
Acitas, S. (2018). A new weighted distribution as an extension of the generalized half-normal distribution with applications. Journal of Statistical Computation and Simulation, 88(12), 2325–2341. Taylor Francis.
Teamah, A. E. A. M., El-Damrawy, H. H., Swan, S. M. T. (2020). Generalized weighted exponential-gompertez distribution. Applied Mathematics, 11(02), 97. Scientific Research Publishing.
Rasmussen, P. F. (2001). Generalized probability weighted moments: application to the generalized Pareto distribution. Water Resources Research, 37(6), 1745–1751. Wiley Online Library.
Obulezi, O. J., Nwankwo, B. C., Nwankwo, M. P., Anabike, I. C., Igbokwe, C. P., & Igwebudu, C. N. (2023). Modeling Mortality Rate of COVID-19 Patients in the United Kingdom, Canada, and the Survival Rate of COVID-19 Patients in Spain. Journal of Xidian University, 17(11), 520–538.
Ekemezie, D. F. N., & Obulezi, O. J. (2024). The Fav-Jerry Distribution: Another Member in the Lindley Class with Applications. Earthline Journal of Mathematical Sciences, 14(4), 793–816.
Oha, F. C., Etaga, H. O., Ibeakuzie, P. O., Anabike, I. C., & Obulezi, O. J. (2024). Power XShanker Distribution: Properties, Estimation, and Applications. Eng OA, 2(1), 01–20.
Nwankwo, B. C., Obiora-Ilouno, H. O., Almulhim, F. A., SidAhmed Mustafa, M., & Obulezi, O. J. (2024). Group acceptance sampling plans for type-I heavy-tailed exponential distribution based on truncated life tests. AIP Advances, 14(3). AIP Publishing.
Etaga, H. O., Onyekwere, C. K., Oramulu, D. O., & Obulezi, O. J. (2023). A New Modification of Rani Distribution with More Flexibility in Application. Sch J Phys Math Stat, 7, 160–176.
Etaga, H. O., Nwankwo, M. P., Oramulu, D. O., Anabike, I. C., & Obulezi, O. J. (2023). The Double XLindley Distribution: Properties and Applications. Sch J Phys Math Stat, 10, 192–202.
Etaga, H. O., Onyekwere, C. K., Lydia, O. I., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023). Estimation of the Xrama distribution parameter under complete and progressive type-II censored schemes. Sch J Phys Math Stat, 10, 203–219.
Chukwuma, P. O., Harrison, E. O., Ibeakuzie, P., Anabike, I. C., & Obulezi, O. J. (2024). A new reduced quantile function for generating families of distributions. Annals of Mathematics and Physics, 7(1), 001–015.
Nwankwo, B. C., Orjiakoh, J. N., Nwankwo, M. P., Chukwu, E. I. M. I., & Obulezi, O. J. (2024). A new distribution for modeling both blood cancer data and median effective dose (ED50) of Artemether-Lumefantrine against P. falciparum. Earthline Journal of Mathematical Sciences, 14(1), 41–62.
Nwankwo, M. P., Nwankwo, B. C., & Obulezi, O. J. (2023). The Exponentiated Power Akash Distribution: Properties, Regression, and Applications to Infant Mortality Rate and COVID-19 Patients’ Life Cycle. Annals of Biostatistics and Biometric Applications, 5(4), 1–12.
Obulezi, O. J., Ujunwa, O. E., Anabike, I. C., & Igbokwe, C. P. (2023). The Exponentiated Power Chris-Jerry Distribution: Properties, Regression, Simulation and Applications to Infant Mortality Rate and Lifetime of COVID-19 Patients. TWIST, 18(4), 328–337.
Etaga, H. O., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023). An improved XShanker distribution with applications to rainfall and vinyl chloride data. Sch J Eng Tech, 9, 212–224.
Onuoha, H. C., Osuji, G. A., Etaga, H. O., & Obulezi, O. J. (2023). The Weibull distribution with estimable shift parameter. Earthline Journal of Mathematical Sciences, 13(1), 183–208.
Oramulu, D. O., Etaga, H. O., Onuorah, A. J., & Obulezi, O. J. (2023). A new member in the Lindley class of distributions with flexible applications. Sch J Phys Math Stat, 7, 148–159.
Etaga, H. O., Celestine, E. C., Onyekwere, C. K., Omeje, I. L., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023). A new modification of Shanker distribution with applications to increasing failure rate data. Earthline Journal of Mathematical Sciences, 13(2), 509–526.
Obulezi, O. J., Anabike, I. C., Okoye, G. C., Igbokwe, C. P., Etaga, H. O., & Onyekwere, C. K. (2023). The Kumaraswamy Chris-Jerry distribution and its applications. Journal of Xidian University, 17(6), 575–591.
Oramulu, D. O., Igbokwe, C. P., Anabike, I. C., Etaga, H. O., & Obulezi, O. J. (2023). Simulation study of the Bayesian and non-Bayesian estimation of a new lifetime distribution parameters with increasing hazard rate. Asian Research Journal of Mathematics, 19(9), 183–211.
Chinedu, E. Q., Chukwudum, Q. C., Alsadat, N., Obulezi, O. J., Almetwally, E. M., & Tolba, A. H. (2023). New lifetime distribution with applications to single acceptance sampling plan and scenarios of increasing hazard rates. Symmetry, 15(10), 1881.
Tolba, A. H., Onyekwere, C. K., El-Saeed, A. R., Alsadat, N., Alohali, H., & Obulezi, O. J. (2023). A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data. Sustainability, 15(17), 12782.
Onyekwere, C. K., Okoro, C. N., Obulezi, O. J., Udofia, E. M., & Anabike, I. C. (2022). Modification of Shanker distribution using quadratic rank transmutation map. Journal of Xidian University, 16(8), 179–198.
Musa, A., Onyeagu, S. I., & Obulezi, O. J. (2023). Exponentiated Power Lindley-Logarithmic distribution and its applications. Asian Research Journal of Mathematics, 19(8), 47–60.
Abuh, M., Onyeagu, S. I., & Obulezi, O. (2023). Comparative Study Based on Simulation of Some Methods of Classical Estimation of the Parameters of Exponentiated Lindley–Logarithmic Distribution. Asian Journal of Probability and Statistics, 22(4), 14–30.
Onyekwere, C. K., & Obulezi, O. J. (2022). Chris-Jerry distribution and its applications. Asian Journal of Probability and Statistics, 20(1), 16–30.
Obi, C. D., Chukwuma, P. O., Igbokwe, C. P., Ibeakuzie, P. O., & Anabike, I. C. (2024). A Novel Extension of Rayleigh Distribution: Characterization, Estimation, Simulations and Applications. Journal of Xidian University, 18(7), 177–188.
Anabike, I. C., Okoro, E. S., Igbokwe, C. P., Ibeakuzie, P. O., & Ekemezie, D. F. (2024). New Extended Rayleigh Distribution: Properties, Estimation, Simulation and Application. Journal of Xidian University, 18(7), 179–207.
Anabike, I. C., Igbokwe, C. P., Onyekwere, C. K., Obulezi, O. J. (2023). Inference on the parameters of Zubair-Exponential distribution with application to survival times of Guinea Pigs. Journal of Advances in Mathematics and Computer Science, 38(7), 12–35.
Obulezi, O. J., Anabike, I. C., Oyo, O. G., Igbokwe, C., Etaga, H. (2023). Marshall-Olkin Chris-Jerry distribution and its applications. International Journal of Innovative Science and Research Technology, 8(5), 522–533.
Team, R. C. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.