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1|Introduction 

Mines have long been recognized as one of the most expensive and complex industries, with numerous studies 

focusing on various aspects such as geology, drilling planning, and operational processes [1]. Effective 

exploitation of mines is crucial for economic growth, as each ton of copper ore can be valued at nearly 
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Abstract 
This research investigates simulation-based Multi-Objective Optimization (MOO) in complex systems. The main goal of this research 

is to develop a metamodeling approach that can simultaneously simulate multiple conflicting objectives in complex systems. This 

research seeks to identify and analyze the challenges in optimizing complex systems and provide solutions to improve the 

performance and efficiency of these systems. By using meta models, an attempt is made to reduce computational time and increase 

the accuracy of optimization results. 

In this paper, MOO in the mining system of a copper mining complex is presented using the NBI optimization method and 

regression meta model. For this purpose, two objective functions are considered: maximizing the total extraction amount, which 

includes the sum of sulfide, oxide, low-grade ore and waste extractions in the mine, and minimizing the transportation travel time, 

subject to the constraints of storage capacity, transportation equipment and budget. The Central Composite Design (CCD) method 

is used to construct the Design of Experiments (DOE) for the design variables. 

Firstly, the design variables include the number of 120-ton, 240-ton, 35-ton and 100-ton trucks are considered. The amount of 

objectives in each design combination is considered as the response surface. The appropriate meta model to maximize the total 

extraction rate and minimize the transportation travel time, two modified nonlinear regression functions are determined. The 

accuracy of the models for selection is examined using PRESS and R2 statistics. Also, the most common PRESS error is used to 

validate the meta models. Then, the MOO problem is solved using the modified NBI method. Finally, the Pareto solutions using 

this approach are presented and discussed. 

This study investigates simulation-based MOO in complex systems and develops a metamodeling approach. The results show that 

the use of meta models can significantly reduce computational time and increase the accuracy of optimization results. By simulating 

multiple conflicting objectives simultaneously, this study identifies and analyzes the challenges in optimizing complex systems and 

provides effective solutions to improve the performance of these systems. In addition, the models developed in this study can help 

in optimal decision-making in various engineering and management fields and can be used as an efficient tool in solving complex 

problems. Ultimately, this study will not only contribute to a better understanding of optimization processes in complex systems, but 

will also pave the way for future research in this area. 
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  $100,000 [2]. However, the presence of uncertain parameters complicates traditional modeling techniques. 

Simulation models serve as powerful tools for creating flexible models without many assumptions, 

increasingly used to enhance system performance in a competitive market [3], [4]. Multi-Objective 

Optimization (MOO), which involves evaluating multiple objectives, is common in engineering design but 

requires extensive simulation runs, each demanding significant computation time [5]. Despite this, the 

investment in computational time is justified for finding optimal solutions [6], [7]. Although research on 

simulation-based MOO is limited, various studies have demonstrated its effectiveness using evolutionary 

algorithms to improve manufacturing processes, personnel planning, and machining operations [5]. Meta-

models, which establish relationships between input variables and responses, are essential for optimizing 

complex models [8], [9]. Different meta-modeling techniques, such as Response Surface Methodology (RSM) 

and artificial neural networks, have been developed, but no single method has proven superior [10], [11]. 

Simulation-based optimization is categorized into common optimization and hierarchical optimization, each 

addressing different levels of complexity in problem-solving [12]. Recent studies have shown promising 

results in increasing productivity and efficiency in various applications, including mining and manufacturing, 

through simulation-based approaches [13–15]. Meta-models establish relationships between input variables 

and response levels to forecast simulation calculations [13]. These are mathematical estimation models 

designed for simulation purposes [5]. Various meta-modeling techniques, including RSM, Kriging, and 

artificial neural networks, have been developed to tackle optimization problems [16–18]. While studies have 

compared surrogate models based on accuracy, efficiency, and stability, no single method has emerged as 

superior, with the choice of meta-model often being arbitrary [19]. Typically, low-order polynomials are 

employed in related studies, where unknown coefficients are determined by minimizing residual errors 

between fitted values and the objective function [20]. The response surface method, a collection of statistical 

and mathematical techniques, optimizes probabilistic functions like simulation models and has gained traction 

in engineering for product design and development [12], [21]. 

Therefore, the tendency to use meta models in MOO is very important. Because, in engineering problems, 

generally more than one goal is considered, and considering that the goal functions conflict with each other, 

there is no optimal solution for them, but instead, a set called Pareto solutions. It seems that MOO based on 

a meta model is an effective approach both in MOO and in the design of complex products, whose main goal 

is to determine a suitable functional relationship between input and output in the system. Therefore, in this 

paper, for the simulation-based optimization framework, an estimated function is substituted for the complex 

simulation model. 

In the following, the paper is organized as follows. In Section 2, presented literature review for identification 

research gap. In Section 3, the definitions, concepts, and details of the modified NBI MOO method are 

simulation model, formulated problem structure and the meta modeling method are explained. Statistical 

analysis, optimization of the mathematical model, and the comparison of the obtained results are presented 

in Section 4. Finally, Section 5 contains conclusions and some suggestions for future research studies. 

2|Literature Review 

MOO is a compelling area of research within optimization methods, particularly regarding the application of 

interactive techniques. However, there has been limited research in the literature focusing on MOO through 

the simulation of interactive algorithms, despite the prevalence of various evolutionary algorithms. For 

instance, Syberfeldt et al. [14] introduced an evolutionary algorithm-based approach for simulation-driven 

MOO aimed at enhancing cell manufacturing at VOLVO in Sweden. Their findings indicated that utilizing 

simulation alongside evolutionary algorithms could boost cell usage and minimize delays. In another study, 

Syberfeldt et al. [22] explored simulation-based MOO for the personnel planning system at the Swedish post 

office, aiming to establish optimal work schedules that reduce working hours and administrative burdens, 

employing the NSGA-II algorithm for this purpose. The results demonstrated the algorithm's ease of 

implementation in optimization tasks. Moussavi et al. [23] tackled an integer multi-objective programming 

challenge to create an ergonomic work cycle within a truck assembly production system, focusing on balancing 
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  worker workloads and shortening production cycle times. Their model, developed using Goal Programming 

and solved with the Gurobi algorithm, proved effective in achieving both objectives. Amouzgar et al. [13] 

presented a robust framework for MOO in metal cutting machining processes, targeting the minimization of 

tool-chip temperature and wear depth while maximizing the removal rate. Their study employed knowledge 

discovery and data weighting techniques to analyze non-dominated solutions through data mining, enhancing 

understanding of the metal cutting process. Das and Pratihar [24] proposed a method to improve the accuracy 

of solutions derived from MOO evaluation algorithms. This involved obtaining a set of Pareto points through 

a weighted multi-objective evaluation algorithm, which was then utilized in a neural system to derive modified 

Pareto solutions, providing valuable insights for engineering analysis. Karmellos and Mavrotas [25] compared 

MOO frameworks for designing energy distribution systems under uncertainty, presenting two models to 

identify areas needing heating, cooling, and electricity while considering uncertain factors like energy prices 

and demand. Russell and Taghipour [26] introduced a novel solution method using MOO to address complex 

scheduling issues in low-volume production systems, modeling scheduling problems through integer multi-

objective linear programming. Their models were validated in a real-world aerospace industry case study, 

confirming their reliability. Zhang et al. [27] applied MOO to determine concrete mix ratios under nonlinear 

constraints, proposing a machine learning-based optimization method using metaheuristic algorithms, which 

serves as a design guide for decision-making prior to construction. One effective strategy for rapid and precise 

estimation of complex and costly models is the simulation of meta-models or surrogate models. 

Despite the growing interest in simulation-based MOO within complex systems, several research gaps remain 

unaddressed: 

Limited integration of meta-modeling techniques: while meta-modeling approaches such as RSM, Kriging, 

and artificial neural networks have been explored, there is a lack of comprehensive studies that systematically 

compare these techniques in the context of simulation-based MOO. Further research is needed to identify 

which meta-modeling methods yield the most accurate and efficient results across various complex systems. 

Insufficient exploration of interactive algorithms: although interactive algorithms have shown promise in 

MOO, there is a scarcity of research focusing on their application within simulation frameworks. Investigating 

how interactive algorithms can enhance the performance of simulation-based MOO could provide valuable 

insights and improve decision-making processes in complex systems. 

Challenges in handling uncertainty: many existing studies do not adequately address the uncertainties inherent 

in complex systems. Future research should focus on developing robust meta-modeling techniques that can 

effectively incorporate and manage uncertainty, thereby improving the reliability of simulation-based MOO 

outcomes. 

Scalability issues: current approaches often struggle with scalability when applied to large-scale complex 

systems. Research is needed to develop scalable meta-modeling strategies that can efficiently handle high-

dimensional design spaces and large datasets without compromising accuracy. 

Real-world applications and case studies: there is a need for more empirical studies that apply simulation-

based MOO with meta-modeling approaches to real-world complex systems. Such studies would help validate 

theoretical models and demonstrate practical applications, enhancing the relevance of research findings. 

Integration of machine learning techniques: the potential of machine learning to improve meta-modeling and 

simulation-based MOO remains largely untapped. Future research could explore how machine learning 

algorithms can be integrated into meta-modeling frameworks to enhance predictive capabilities and optimize 

performance. 

Holistic framework development: a comprehensive framework that combines simulation, MOO, and meta-

modeling techniques is lacking. Developing such a framework could facilitate a more systematic approach to 

tackling complex system challenges and enhance the overall effectiveness of optimization efforts. 
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  By addressing these gaps, future research can contribute significantly to the field of simulation-based MOO, 

providing valuable tools and methodologies for managing complex systems effectively. 

3|Research Methodology 

3.1|Modified NBI Method 

The modified NBI method aims to identify the Pareto frontier in MOO problems, utilizing a two-stage 

process. The first stage involves applying the modified CHIM instead of the original NBI algorithm, while 

the second stage manages the iterations to resolve the optimization problem. Normalization of objective 

functions is crucial, ensuring values range from zero to one, with users able to set upper limits if necessary. 

The quasi-Newton method is employed to find a relative minimum for the optimization challenges, differing 

from population-based methods like Genetic Algorithms (GA), which require multiple parameters and often 

yield inconsistent results. In contrast, the modified NBI method simplifies the process by focusing on a single 

parameter to generate Pareto points, ensuring consistent outcomes without the need for numerous iterations. 

The overall algorithm for this modified NBI optimization is also provided. 

Input: number of significant digits 

          Number of initial points 

Output: non-dominated set 

//Start// 

Step 1. Normalize objective functions. 

Step 2. Generating Pareto point. 

Step 3. Initiate objective function optimization. 

Step 4. Accurate Pareto set. 

Step 5. Fix objective function values. 

Step 6. Remove Pareto dominated points. 

Step 7. Optimal stage. 

//Finish// 

In the first stage, the objective functions are placed between the minimum value of zero and the maximum 

value of one. Therefore, we determine the objective functions in the interval ⟦0; 1⟧. This causes the Pareto 

frontier to be placed inside a bounded box. In the second step, a Vm is selected for each pair in this step to 

generate the space of Pareto points. In the third step, the first optimization problem with the starting 

minimum point for f1;  t = 1;  β = 0 starts. If at the end of optimization t = 0;  β = 1, then go to Step 4. 

Because in this case, a Pareto point has been estimated. Otherwise, use t + Vm and β + Vm as starting points 

for the next optimization, and this step is repeated. In the fourth step, if the estimated Pareto set needs more 

accuracy, a smaller Vm is used to generate more Pareto points and we return to Step 3. Otherwise, we go to 

Step 5. In the fifth step, for N > 2, we use different values in ⟦0; 1⟧ in order to construct the values of objective 

functions to determine the results of multiple objectives. Then we return to Step 1 and determine the objective 

functions in the interval ⟦0; 1⟧. If all combinations are determined, we stop. Otherwise, go to the Step 6. In 

the sixth step, based on the described filter [28], the set of inferior Pareto points is removed from the set of 

generated Pareto points. In the seventh step, choose a range for Vm for more precision of the generated Pareto 

set and repeat Steps 2 to 6 for all Vmvalues in the range. 
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  3.2|Meta Modeling Approach 

The key components of the proposed framework involve meta model-based optimization [29], which includes 

determining the structure of the meta model, designing experiments to refine the meta model, conducting 

simulation experiments, fitting the meta model, and validating its accuracy along with the optimization of the 

meta model within the problem context. The algorithm for identifying an appropriate meta model is illustrated 

below. This algorithm has been applied for MOO based on simulation, with the detailed steps provided in 

the following sections [2]. 

Objectives, variables and parameters input: 

Output: meta model and a non-dominated set. 

//Start// 

Step1. Simulation model development. 

Step 2. Design of experiment. 

Step 3. Conduct simulation model experiment. 

Step 4. Fit the meta model. 

Step 5. Meta model validation. 

Step 6. Apply optimization algorithm. 

Step 7. Quality of results. 

//Finish// 

The algorithm begins with the development of a Discrete Event Simulation (DES) model. If the model is 

validated, the process moves forward; if not, modifications are made to achieve the necessary validity. Next, 

a suitable DOE is created. In the third step, the scenarios from the previous design are executed in the 

simulation model to identify the dependent variable. The fourth step involves selecting the optimal meta 

model and determining its unknown coefficients through statistical analysis. The fifth step assesses whether 

the constructed meta model can accurately predict system performance. If it lacks validity, adjustments are 

made either in the DOE or the type of meta model. In the sixth step, management constraints are applied to 

derive a set of non-dominant solutions for the MOO problem. Finally, the seventh step compares the results 

with the current situation to evaluate the level of improvement. 

4|Findings 

4.1|Picture of Problem 

The Sarcheshmeh open-pit copper mine complex, situated in Kerman province in southeastern Iran, is 

recognized as the second largest copper deposit globally. It lies 65 kilometers southwest of Kerman city and 

50 kilometers south of Rafsanjan, at an average altitude of approximately 2600 meters, with the highest point 

reaching around 3000 meters. The extracted ores are classified into four categories: 

I. Sulfide ore (copper grade over 0.7%). 

II. Oxide ore (copper grade between 0.25% and 0.7%). 

III. Low-grade ore (copper grade between 0.15% and 0.25%). 

IV. Waste (copper grade below 0.15%). 

These categories account for 45%, 5%, 44%, and 6% of the total rock volume, respectively. The 

transportation and storage strategies are determined based on the type of ore. Sulfide ore is sent to a crusher 

station with a capacity of 60,000 Tons per day, followed by storage in a harp copper facility with a capacity 



 Simulation-based on multi-objective optimization in complex system: A meta-modeling approach 

 

30

 

  of 150,000 Tons, and subsequently in a soft copper storage. Oxide ore, low-grade ore, and waste are directed 

to their respective dumping stations. The conceptual model of the haulage system at the Sarcheshmeh copper 

complex is illustrated in Fig. 1. 

Fig. 1. The conceptual model of haulage system at Sarcheshmeh copper mine. 

In order to transport ores, a number of Trucks are assigned to the loading station. The mineral substance is 

loaded on a truck by a shovel, and when the truck is filled, it is led to a dump. The main purpose of this 

research is determining the optimal number of haulage system equipment especially number of trucks in order 

to maximize sulfide ore and maximize loaded ores in the Trucks according to equipment and storage capacity 

and budget. The key resources in the Sarcheshmeh copper mine are as follow: 

I. Truck 120 Tons (X1). 

II. Truck 240 Tons (X2). 

III. Truck 35 Tons (X3). 

IV. Truck 100 Tons (X4). 

Currently Sarcheshmeh open copper mine has nine Trucks 35 Tons, 36 Trucks 100 Tons, 20 Trucks 120 

Tons and two Trucks 240 Tons. Trucks which are used to transfer oxide ore and wastes are varied between 

35 Tons and 100 Tons. Moreover, 120 Tons to 240 Tons’ trucks are used to move sulfide and low grade ore. 

It is possible to assign each shovel to every kind of ores. The hourly operating cost of trucks are shown in 

Table 1. 

Table 1. Hourly operating cost of trucks (cost unit) [30]. 

Truck Depreciation Overhead Repair Maintenance Gas Lubricants Other Total 

Spare 
Parts 

Salary Spare 
Parts 

Salary 

35-Tons 11 0 1 0 2 1 0 3 4 22 

100-Tons 21 1 2 1 5 1 1 5 9 45 

120-Tons 32 1 4 1 7 1 1 8 15 69 

150-Tons 30 1 4 1 7 1 1 8 16 67 

240-Tons 43 2 5 1 10 2 2 11 43 118 
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  4.2|System Discrete Event Simulation Model 

This paper examines the use of simulation modeling with Arena software® to analyze the haulage system at 

the Sarcheshmeh copper open-pit mine, as detailed by Eskandari et al. [30]. The developed model 

demonstrates no significant discrepancies in results at the 95% confidence level, indicating its accuracy. To 

execute the model, simulation parameters such as the duration and number of repetitions must be established. 

The haulage system operates 24 days a month, leading to a repetition length of one month. The number of 

repetitions is set at 10, based on the half-width of trucks, which is crucial for assessing system performance. 

A warm-up period is implemented to ensure system stability, with experiments revealing that performance 

reaches a steady state after four days. Table 2 presents the lower, upper, and current bounds for truck 

operations. These configurations are incorporated into the model, which runs on a personal computer with 

an Intel Core i3 1.8 GHz CPU and 4GB of RAM. 

Table 2. Number of trucks combination at each type. 

 

 

  

 

4.3|Haulage Multi-Objective Planning in the Sarcheshmeh Copper Mine 

Complex 

Based on the previous information, the managers of the Sarcheshmeh copper mine complex tend to optimize 

the combination of key haulage resources based on two objective functions: maximizing the total extraction 

amount, which is the sum of the extraction amount of sulfide, oxide, low-grade ores, and waste in this mine, 

and minimizing the travel time of the haulage. find the relocation according to the storage capacity limit and 

the haulage and budget considered. The optimization problem is mathematically formulated as follows in Eq. 

(1). 

Eq. (1) is an integer MOO problem. The functions of this problem do not have an analytical mode and must 

be evaluated through simulation according to the framework presented in this paper. ciis the cost of each 

truck. B is the total budget available. ci
′ is the capacity of each key resource. C is the total storage capacity in 

the system. Li and Ui are respectively the lower and upper bounds of resources in the mine complex. 

Type Combination (Lower Bound, Current, Upper Bound) 

Truck 120 Tons (12,20,28) 
Truck 240 Tons (3,4,5) 
Truck 35 Tons (9,15,25) 
Truck 100 Tons  (25,36,45) 

max f1 (X1; X2; X3; X4), 

min f2 (X1; X2; X3; X4), 

s. t. 

∑ cixi ≤ B

4

i=1

, 

∑ ci
′xi ≤ C,

4

i=1

 

Li ≤ xi ≤ Ui,    for i = 1; 2; 3; 4, 

xi integer. 

(1) 
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  4.4|Numerical Results 

This paper presents a framework for MOO of extraction rates and travel times for moving equipment in a 

copper mine using a meta modeling approach. The Central Composite Design (CCD) is employed for 

sampling and determining objective values. The primary goals are to maximize total extraction, which includes 

sulfide, oxide, low-grade rocks, and waste, while minimizing travel time for hauling, considering storage 

capacity, haulage, and budget constraints. The study focuses on key resources such as 120-ton, 240-ton, 35-

ton, and 100-ton trucks, excluding other equipment like shovels, as they have minimal impact on the 

objectives or existing processes. This simplification reduces the design space. The approach begins with 

designing the operational process of the copper mining complex through a DES model. MOO is achieved 

using meta model-based simulation and DOE to analyze various scenarios. DOE serves as a valuable 

mathematical tool for statistical modeling and systematic problem analysis to optimize variables. The initial 

step in creating a meta model involves selecting input variables and their levels within system constraints, as 

detailed in Table 2. 

Table 2. Predetermined parameters of experimental design. 

 

 

 

These variables (X1; X2; X3;  X4) are independent variables that are used as the input value of the simulation 

model to make the dependent variables of the extraction rate of minerals and the duration of moving trucks. 

Distances (X1; X2; X3;  X4) is 17, 5, 21, 21, respectively, which is considered for each combination. By using a 

pseudo-regression model, instead of 17 × 5 × 21 × 21 = 37485 combinations for only one objective and 

2 × 37485 for both objectives, all combinations of input variables can be shown. A CCD with 25 experiments 

for both objective is employed for this purpose. CCD is the most famous design of the response surface 

method. CCD consists of a two-stage fractional or full factorial design with central points to which several 

points called non-center points have been added. If the distance of the center of the design to the factorial 

points is considered to be ±1 for each variable, the distance of the center of the design to the non-centered 

points will be ±α where |α| > 1. The reason for using this design is the proper estimation of curvature in the 

system model. Each combination in this plan is repeated 10 times and the average of each performance is 

determined as the dependent variable. Then, the best and most qualitative meta model is selected through 

statistical analysis. 

The problem consists of two objectives: maximizing the extraction rate of mineral stones and minimizing the 

time of moving haulage in the mine. Both goals are calculated using simulation results. Before fitting, we must 

determine the accuracy of the functions for each objective. Using R2 and P-Value statistics for candidate meta 

models, the best prediction function is selected for each of the objectives. The R2statistic indicates the 

difference between the experimental and predicted values, the higher the value, the more significant it means 

that there is no significant difference between these two values. In Table 4, the validation of the candidate 

models for each objective has been examined. 

Table 4. Accuracy model of responses for three candidate regression functions. 

 

 

 

 

The evaluation results of the model's accuracy, as shown in Table 4, indicate that the modified model is 

sufficiently accurate for predicting performance across both response surfaces. It is essential to estimate the 

+𝛂 −𝛂 Maximum Minimum Variable Name Variable ID 

36 4 28 12 Trucks 120 Tons X1 
6 2 5 3 Trucks 240 Tons X2 
33 1 25 9 Trucks 35 Tons X3 
55 15 45 25 Trucks 100 Tons X4 

Status 𝐑𝟐 P-Value Function Response 

Significant 0.62 0.0004 Linear model Total ores production 
Significant 0.69 0.0249 Two factor interactions model 
Significant > Selected 0.93 0.0001 Modified model 
Significant 0.63 0.0003 Linear model Total trucks travel time 
Significant 0.67 0.0335 Two factor interactions model 
Significant > Selected 0.94 0.0001 Modified model 
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  coefficients of significant effects for both objectives to properly fit the model. Statistical analyses, including 

effect identification and estimated coefficients for total production and truck travel time in the copper mine 

complex, are detailed in Table 5 and Table 6. The total ore production model has an F-Value of 3.24, suggesting 

significant agreement between experimental and predicted values. Similarly, the truck travel time model has 

an F-Value of 19.62, indicating its significance as well, with only a 0.01% chance that such a large F-Value 

could occur due to random noise. Prob > F values below 0.05 confirm the significance of model terms, while 

|t| values exceeding 1.96 also indicate significance. Although variables X2 and X4 are not meaningful in the 

first and second responses, respectively, they are included in the analysis because they are decision variables 

within the system, and their optimal values will be calculated in the future. 

Table 5. Estimated effects and coefficients for the total ores production. 

 

 

 

 

 

 

  

Table 6. Estimated effects and coefficients for the trucks travel time. 

 

 

 

 

   

 

 

 

Based on the statistical analysis, the pseudo-model of the total amount of ore extraction and the total time of 

moving the trucks is formulated as follows Eq. (2) and Eq. (3). 

The copper mine complex can use the above meta models to find the non-dominated solutions subject to 

given constraint when all functions are validating. Simulation validity measures how well the model represents 

the real world system [10]. To provide the validity of the meta models built in our paper we use most common 

PRESS error is root mean square PRESS denoted as RMSEPRESS Calculated by √
PRESS

n
 where, n is number of 

test points selected to evaluate the model. It is obvious that value of zero for RMSE is the optimal desired 

values [31]. In Table 10, the RMSEPRESSvalue obtained for modified models and other considered models for 

each objective is shown. Therefore, we conclude that the modified models can be used as an abstraction 

model of the simulation model. 

Term Coefficient S.E Coefficient P-Value t-Value 

Intercept 0.47 0.035 0.0001 13.4285 

X1 0.15 0.033 0.0005 4.5454 

X2 0.058 0.033 0.1010 1.7575 

X3 0.20 0.033 0.0001 6.0606 

X4 0.053 0.019 0.0140 2.7894 

X1X2 0.069 0.023 0.0105 3 

X1
2 0.041 0.019 0.0535 2.1578 

X2
2 0.055 0.019 0.0140 2.8947 

X1X2X3 -0.064 0.023 0.0160 -2.7826 

X1
2X2 0.14 0.040 0.0038 3.15 

X1
2X3 -0.18 0.040 0.0007 -4.5 

Source Coefficient S.E Coefficient P-Value t-Value 

Intercept 0.71 0.018 0.0001 39.4444 

X1 -0.082 0.015 0.0001 5.4666 

X2 0.23 0.026 0.0001 8.8461 

X3 -0.047 0.015 0.0075 -3.1333 

X4 0.008 0.015 0.5672 0.5333 

X1X4 0.039 0.018 0.0503 2.1666 

X1X2X3 0.048 0.018 0.0205 -2.6666 

X1X2X4 -0.052 0.018 0.0139 -2.8888 

X1
2X2 -0.12 0.032 0.0021 -6.6666 

X1X2X3X4 0.073 0.018 0.0015 4.0555 

X2
4 -0.015 0.003 0.0008 -5 

X4
4 -0.007 0.003 0.0459 -2.3333 

Y1 = 0.47 + 0.15X1 + 0.058X2 + 0.2X3 + 0.053X4 + 0.069X1X2 + 0.041X1
2 + 0.055X2

2

− 0.064X1X2X3 + 0.14X1
2X2 − 0.18X1

2X3. 
(2) 

Y2 = 0.71 − 0.082X1 + 0.23X2 − 0.047X3 + 0.008X4 + 0.039X1X4 − 0.048X1X2X3

− 0.052X1X2X4 − 0.12X1
2X2 + 0.073X1X2X3X4 − 0.015X2

4 − 0.007X4
4. 

(3) 
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  Table 7. Validation of the meta models. 

 

 

 

 

 

 

4.5|Mathematical Optimization 

Mathematical problem considered as follow Eq. (4). 

 

In the Integer Nonlinear Multi-Objective Optimization (INMOO) problem is considered, Y1 is the function 

of the total amount of ores extraction in the mine, and its equation is specified by the symbol Textractionin the 

model. Y2 is the function of the total transportation time of trucks, which is represented by the symbol 

TTruck transportation. x is a vector of design variables that has four components x1 number of trucks 120 Tons; 

x2 number of trucks 240 Tons; x3 number of trucks 35 Tons; x4 the number of trucks is 100 Tons. Both 

functions were obtained using the analysis described earlier. The MOO problem has been coded and solved 

through the modified NBI method with two meta models with Maple software. 

Two-Dimensional (2D) graphs have been used to show the Pareto frontier of both objectives, where each 

axis represents each objective. The Pareto frontier represents a surface covering all possible mass values. 

In engineering applications, such as the case study presented in this paper, understanding the relationship 

between objective functions and non-dominated solutions is crucial. Analyzing the differences among non-

dominated solutions and their impact on objective functions aids in comprehending MOO challenges. The 

modified NBI method algorithm is illustrated in Fig. 2, displaying the normalized values of both objective 

functions in a 2D space, with values ranging from zero to one. The optimization algorithm generates 43 non-

dominant points, forming a complete set of Pareto points, as depicted in Fig. 3. The optimization phase 

commences with this non-dominant set, leading to the identification of the best non-dominated solutions, 

which constitute the Pareto set. The final Pareto set includes 19 out of 36 non-dominated solutions, 

represented in Fig. 4. Fig. 5 compares the accuracy of the solutions derived from the built models to the 

current situation, indicating that the optimization method yields superior solutions. The red dot in Fig. 5 

marks the objective function values in the existing state. Consequently, designers or engineers can select 

optimal variable designs that meet their goals by utilizing the Pareto frontier and the non-dominated solution 

set. 

Function 𝐑𝐌𝐒𝐄𝐏𝐑𝐄𝐒𝐒 

Total ores production (Y1) RMSEPRESS
Modified = 0.16 

RMSEPRESS
Linear = 0.2 

RMSEPRESS
2FI = 0.26 

Total trucks travel time (Y2) RMSEPRESS
Modified = 0.11 

RMSEPRESS
Linear = 0.17 

RMSEPRESS
2FI = 0.24 

Maximize (Y1); Textraction(𝐱), 

Minimize (Y2); TTruck transportation(𝐱), 

s. t. 

120x1 + 24x2 + 35x3 + 100x4 ≤ 60000, 

12 ≤ x1 ≤ 28, 

1 ≤ x2 ≤ 5, 

5 ≤ x3 ≤ 25, 

25 ≤ x4 ≤ 45, 

xi integer   for i = 1; 2; 3; 4. 

(4) 
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Fig. 2. 2D plot of normalized points of objective functions. 

Fig. 3. All points of the generated Pareto set. 

Fig. 4. The non-dominated final solutions. 

Fig. 5. Comparison of the current situation and the results obtained. 
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5|Conclusion 

This paper demonstrates that the modified NBI method and regression models are effective tools for MOO 

in physical systems, particularly in mining complexes. A control model for the extraction of sulfide, oxide, 

low-grade ores, and waste, as well as haulage transportation time, has been developed for the Sarcheshmeh 

copper mining complex in Iran. The paper illustrates how engineers and designers can easily select optimal 

variable designs that meet desired objectives by identifying the Pareto frontier and the set of non-dominated 

solutions. Utilizing MOO, RSM, DOE, simulation modeling, and the modified NBI mathematical method, 

the study investigates the effects of input variables and their interactions. RSM offers significant advantages, 

providing extensive information from a limited number of experiments, which saves time. Additionally, it 

effectively reveals the interactions between factors (input variables) on the response. The discrete event model 

considers the number of 120-ton, 240-ton, 35-ton, and 100-ton trucks, establishing their permissible levels. 

The modified NBI method identifies non-dominant points for maximizing ore extraction and minimizing 

haulage transportation, achieving high accuracy across all combinations compared to the current situation. 

Future research could apply multi-criteria decision-making methods, such as TOPSIS, to rank the final non-

dominated sets in the mining complex. 
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