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Abstract

This paper provides a rigorous analysis of the computational complexity in three dynamic systems—chess with
rule-changing power, genetic sequence alignhment with random mutations, and stock market prediction with
manipulative players—to argue that P /= NP. We emphasize that the temporal patterns (e.g., move sequences in
chess, evolutionary timelines in genetics, and time-series price movements in the stock market) in these systems
cannot be reduced to polynomial-time computable problems, due to their inherent exponential or super-

polynomial complexity.

In the chess scenario, rule changes are constrained to preserve EXPTIMEcompleteness. In genetics, multiple
sequence alignment (MSA) remains NP-complete even under stochastic mutations. In the stock market,
predicting short-term time-series patterns is NP-hard or worse, as market efficiency implies P = NP. Formal
arguments, including reductions and complexity class separations, demonstrate that these temporal dynamics
resist polynomial-time solutions. A chart visualizes the exponential state space growth, reinforcing the rejection
of P = NP.
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1| Introduction

The P /= NP conjecture asserts that no polynomial-time algorithm exists for solving NP-complete problems,
despite efficient verification of solutions Sipser [1]. This paper rigorously analyzes three domains—chess with

dynamic rule changes, genetic sequence alignment with random mutations, and stock market timeseries
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prediction with manipulative players—to show that their temporal patterns (sequences of events over time)

cannot be reduced to polynomial time.

We prove that attempting such reductions would collapse complexity classes (e.g., EXPTIME to P or NP to
P), which is widely believed impossible. Enhanced with formal proofs and additional citations, this analysis
strengthens the argument for P /= NP.

2| Chess with Rule-Changing Power
2.1| Scenario and Complexity

In this variant, one player can arbitrarily change rules (e.g., piece movements, win conditions, board size) but
is constrained from making P = NP, ensuring the decision problem (“Can White force a win?”’) remains
outside P. Standard 8 X8 chess has ~ 1043 positions, but generalized n X n chess is EXPTIME-complete:
solvable in O(2poly(n)) time but not faster Fraenkellichtenstein1981. The proof involves reducing the
acceptance problem of an exponential-time Turing machine to chess positions on an n X n board, where n

scales with the input size.
2.2 | Rigorous Analysis of Temporal Patterns

Temporal patterns in chess refer to sequences of moves leading to a win or draw. In generalized chess,
determining if a position admits a winning sequence requires exploring an exponential game tree (branching
factor ~ n2, depth ~ poly(n)). Formally, the problem is EXPTIME-complete via reduction from the
alternating Turing machine acceptance problem [2]. Reducing this to polynomial time would imply
EXPTIME € P, collapsing the time hierarchy theorem [3], which states that DTIME(2O(n)) propetly
contains DTIME(nk) for any k.

Under rule changes, valid modifications (e.g., queen moves like a knight) preserve the exponential state space,
as the game tree remains O(2poly(n)). Invalid changes (e.g., constant-time win) reduce it to O(1), implying P
= NP for the decision problem. Thus, temporal move patterns cannot be polynomial-time predictable without
violating complexity separations.

2.3 | Implications

The constraint enforces P /= NP by preserving EXPTIME-hardness. If P = NP, generalized chess would

be in P, contradicting known lower bounds [2].

3| Genetics and Random Mutations

3.1| Scenario and Complexity

Chromosome matching via MSA is NP-complete for k 2 3 sequences under the sum-of-pairs score [5].
Random mutations introduce stochasticity, generating temporal patterns as evolutionary timelines (sequences
of mutations over generations).

3.2| Rigorous Analysis of Temporal Patterns

Temporal patterns in genetics involve predicting mutation sequences over time, modeled as a time-series in a
chaotic system (e.g., logistic map for population dynamics). MSA is NP-complete via reduction from the
shortest common supersequence problem: given sequences S1, . .., Sk, finding an alignment minimizing gaps
and mismatches is equivalent to an NP-hard optimization [6]. With mutations, the state space is 4n for DNA
length n, and predicting future sequences requires enumerating exponential paths.

Formally, consider the problem: “Given a genome and mutation rate, predict the sequence after t steps.”

This is at least NP-hard, as verifying a predicted sequence is polynomial (via simulation), but finding the
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optimal alignment post-mutation is NP-complete. In chaotic regimes, small perturbations (mutations) lead to
exponential divergence [7], making long-term prediction require O(2t) time. Reducing this to polynomial time
would solve NPcomplete subproblems efficiently, implying P = NP. The Lyapunov exponent > 0 in chaotic

genetic models ensures sensitivity, precluding polynomial-time bounds SantaFe2025.
3.3| P~ NP Connection

Heuristics like BLAST are used because exact MSA is intractable [8]. If P = NP, temporal mutation patterns
could be predicted in poly(n, t), contradicting NP-completeness.

4| Stock Market and Manipulative Players

4.1| Scenario and Complexity

Short-term price prediction involves time-series forecasting under manipulations, modeled as a multi-agent

game. The stock market’ s temporal patterns (price sequences) are chaotic, with computational hardness tied
to Nash equilibria (PSPACE-complete) [9].

4.2 | Rigorous Analysis of Temporal Patterns

Time-series prediction in chaotic systems is computationally hard: for systems like the Lorenz attractor
(modeling market volatility), predicting beyond the Lyapunov time requires exponential precision [7].
Formally, the “Stock market equilibrium”  problem—predicting prices given manipulative strategies— is NP-
hard via reduction from knapsack-like portfolio optimization [10]. Market efficiency (prices reflect all
information) implies P = NP, as finding arbitrage (an NP search problem) would be polynomial if markets
are unpredictable [11].

Consider the decision problem: “Does a stock rise 5% in t steps under manipulations?” This reduces to
solving a chaotic dynamical system, where simulation requires O(20(t)) time due to sensitivity
AIPChaos2025. Manipulations amplify this, creating an adversarial game equivalent to PSPACE-hard
problems (e.g., quantified Boolean formulas). Reducing temporal patterns to polynomial time would imply
PSPACE € P, collapsing the polynomial hierarchy [12].

4.3 | P~ NP Connection

If P = NP, efficient prediction algorithms would exist, contradicting observed market unpredictability [10],
[13].

5|Integrated Analysis and Rejection of P = NP

5.1| Exponential State Spaces and Temporal Hardness

Temporal patterns across domains exhibit exponential growth:
I. Chess: Game tree O(Zpoly(n)).
II.  Genetics: Mutation paths 4n+t.
III.  Stock Market: Price states ~ 100(t) in chaotic models.

Formally, assuming P = NP would allow polynomial reductions of these EXPTIME/PSPACE/NP-hard
problems to P, violating the exponential time hypothesis [14].

5.2| Rejection of P = NP

By the time hierarchy theorem, temporal prediction cannot be reduced to polynomial time without class

collapses. Empirical evidence (e.g., failure of exact solvers) supports this.
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6 | Conclusion

The rigorous analysis shows that temporal patterns in these systems cannot be reduced to polynomial time,
as it would imply P = NP or worse collapses. This reinforces P /= NP.
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