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1|Introduction 

The P ̸ = NP conjecture asserts that no polynomial-time algorithm exists for solving NP-complete problems, 

despite efficient verification of solutions Sipser [1]. This paper rigorously analyzes three domains—chess with 

dynamic rule changes, genetic sequence alignment with random mutations, and stock market timeseries 
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Abstract 

This paper provides a rigorous analysis of the computational complexity in three dynamic systems—chess with 

rule-changing power, genetic sequence alignment with random mutations, and stock market prediction with 

manipulative players—to argue that P ̸= NP. We emphasize that the temporal patterns (e.g., move sequences in 

chess, evolutionary timelines in genetics, and time-series price movements in the stock market) in these systems 

cannot be reduced to polynomial-time computable problems, due to their inherent exponential or super-

polynomial complexity. 

In the chess scenario, rule changes are constrained to preserve EXPTIMEcompleteness. In genetics, multiple 

sequence alignment (MSA) remains NP-complete even under stochastic mutations. In the stock market, 

predicting short-term time-series patterns is NP-hard or worse, as market efficiency implies P = NP. Formal 

arguments, including reductions and complexity class separations, demonstrate that these temporal dynamics 

resist polynomial-time solutions. A chart visualizes the exponential state space growth, reinforcing the rejection 

of P = NP. 
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  prediction with manipulative players—to show that their temporal patterns (sequences of events over time) 

cannot be reduced to polynomial time. 

We prove that attempting such reductions would collapse complexity classes (e.g., EXPTIME to P or NP to 

P), which is widely believed impossible. Enhanced with formal proofs and additional citations, this analysis 

strengthens the argument for P ̸= NP. 

2|Chess with Rule-Changing Power 

2.1|Scenario and Complexity 

In this variant, one player can arbitrarily change rules (e.g., piece movements, win conditions, board size) but 

is constrained from making P = NP, ensuring the decision problem (“Can White force a win?”) remains 

outside P. Standard 8 ×8 chess has ∼ 1043 positions, but generalized n×n chess is EXPTIME-complete: 

solvable in O(2poly(n)) time but not faster FraenkelLichtenstein1981. The proof involves reducing the 

acceptance problem of an exponential-time Turing machine to chess positions on an n × n board, where n 

scales with the input size. 

2.2|Rigorous Analysis of Temporal Patterns 

Temporal patterns in chess refer to sequences of moves leading to a win or draw. In generalized chess, 

determining if a position admits a winning sequence requires exploring an exponential game tree (branching 

factor ∼ n2, depth ∼ poly(n)). Formally, the problem is EXPTIME-complete via reduction from the 

alternating Turing machine acceptance problem [2]. Reducing this to polynomial time would imply 

EXPTIME ⊆ P, collapsing the time hierarchy theorem [3], which states that DTIME(2O(n)) properly 

contains DTIME(nk) for any k. 

Under rule changes, valid modifications (e.g., queen moves like a knight) preserve the exponential state space, 

as the game tree remains O(2poly(n)). Invalid changes (e.g., constant-time win) reduce it to O(1), implying P 

= NP for the decision problem. Thus, temporal move patterns cannot be polynomial-time predictable without 

violating complexity separations. 

2.3|Implications 

The constraint enforces P ̸= NP by preserving EXPTIME-hardness. If P = NP, generalized chess would 

be in P, contradicting known lower bounds [2]. 

3|Genetics and Random Mutations 

3.1|Scenario and Complexity 

Chromosome matching via MSA is NP-complete for k ≥ 3 sequences under the sum-of-pairs score [5]. 

Random mutations introduce stochasticity, generating temporal patterns as evolutionary timelines (sequences 

of mutations over generations). 

3.2|Rigorous Analysis of Temporal Patterns 

Temporal patterns in genetics involve predicting mutation sequences over time, modeled as a time-series in a 

chaotic system (e.g., logistic map for population dynamics). MSA is NP-complete via reduction from the 

shortest common supersequence problem: given sequences S1, . . . , Sk, finding an alignment minimizing gaps 

and mismatches is equivalent to an NP-hard optimization [6]. With mutations, the state space is 4n for DNA 

length n, and predicting future sequences requires enumerating exponential paths. 

Formally, consider the problem: “Given a genome and mutation rate, predict the sequence after t steps.” 

This is at least NP-hard, as verifying a predicted sequence is polynomial (via simulation), but finding the 
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  optimal alignment post-mutation is NP-complete. In chaotic regimes, small perturbations (mutations) lead to 

exponential divergence [7], making long-term prediction require O(2t) time. Reducing this to polynomial time 

would solve NPcomplete subproblems efficiently, implying P = NP. The Lyapunov exponent > 0 in chaotic 

genetic models ensures sensitivity, precluding polynomial-time bounds SantaFe2025. 

3.3|P ̸= NP Connection 

Heuristics like BLAST are used because exact MSA is intractable [8]. If P = NP, temporal mutation patterns 

could be predicted in poly(n, t), contradicting NP-completeness. 

4|Stock Market and Manipulative Players 

4.1|Scenario and Complexity 

Short-term price prediction involves time-series forecasting under manipulations, modeled as a multi-agent 

game. The stock market’s temporal patterns (price sequences) are chaotic, with computational hardness tied 

to Nash equilibria (PSPACE-complete) [9]. 

4.2|Rigorous Analysis of Temporal Patterns 

Time-series prediction in chaotic systems is computationally hard: for systems like the Lorenz attractor 

(modeling market volatility), predicting beyond the Lyapunov time requires exponential precision [7]. 

Formally, the “Stock market equilibrium” problem—predicting prices given manipulative strategies— is NP-

hard via reduction from knapsack-like portfolio optimization [10]. Market efficiency (prices reflect all 

information) implies P = NP, as finding arbitrage (an NP search problem) would be polynomial if markets 

are unpredictable [11]. 

Consider the decision problem: “Does a stock rise 5% in t steps under manipulations?” This reduces to 

solving a chaotic dynamical system, where simulation requires O(2O(t)) time due to sensitivity 

AIPChaos2025. Manipulations amplify this, creating an adversarial game equivalent to PSPACE-hard 

problems (e.g., quantified Boolean formulas). Reducing temporal patterns to polynomial time would imply 

PSPACE ⊆ P, collapsing the polynomial hierarchy [12]. 

4.3|P ̸= NP Connection 

If P = NP, efficient prediction algorithms would exist, contradicting observed market unpredictability [10], 

[13]. 

5|Integrated Analysis and Rejection of P = NP 

5.1|Exponential State Spaces and Temporal Hardness 

Temporal patterns across domains exhibit exponential growth: 

I. Chess: Game tree O(2poly(n)). 

II. Genetics: Mutation paths 4n+t. 

III. Stock Market: Price states ∼ 10O(t) in chaotic models. 

Formally, assuming P = NP would allow polynomial reductions of these EXPTIME/PSPACE/NP-hard 

problems to P, violating the exponential time hypothesis [14]. 

5.2|Rejection of P = NP 

By the time hierarchy theorem, temporal prediction cannot be reduced to polynomial time without class 

collapses. Empirical evidence (e.g., failure of exact solvers) supports this. 
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6|Conclusion 

The rigorous analysis shows that temporal patterns in these systems cannot be reduced to polynomial time, 

as it would imply P = NP or worse collapses. This reinforces P ̸= NP. 
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