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Abstract

This study is a generalization of the length-biased and weighted Chris-Jerry distribution. It introduces an
additional scale parameter to make the distribution more flexible. The functional form of the distribution
which includes the density function, the distribution function, the survival function and the hazard
function together with their plots were presented. The study also encapsulates the characteristics of the
model with the estimation of the parameters using the maximum likelihood method. The applicability
was demonstrated using data on remission times of a sample of 128 bladder cancer patients, mortality
rate of children in Japan and Ireland under the age of five. The results validate that the model is apt in
describing real life events.
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1|Introduction
No model possesses an absolute fit feature. What researchers accept to be the best fit is a relative attribute.
Therefore, there is a continuous search for improved models, especially as industries and the complexities of
human engagements produce big data with inherent characteristics. Another related reason for the improvement
in models is the flexibility of use. No single model can suit all situations, and only a handful of models have
wider applicability. It is on these premises that researchers develop generalizations of probability models.

Some of these generalizations introduce new parameters, such as scale parameters, which in turn improve model
performance. Other generalizations focus on tractability, providing easy ways of deriving properties, a concept
known as parsimony in the statistical literature.

The literature is rich in probability distribution models. Related works include: Kharazmi et al. [3] introduced
the generalized weighted exponential distribution, which is an extension of the standard exponential distribution.
This generalization includes additional parameters that allow for greater flexibility in modeling data with varying
hazard rates. The inclusion of weight functions helps in adjusting the shape and scale of the distribution,
making it more adaptable to different types of data. Ramos and Louzada [4] extends the Lindley distribution
by incorporating weight functions. This generalization improves the model’s ability to fit data with diverse
characteristics, particularly in scenarios involving skewed data or varying hazard rates. The added parameters
allow for better control over the distribution’s shape and scale, enhancing its applicability in real-world situations.
Kharazmi [9] introduced the generalized weighted Weibull distribution, which is an extension of the Weibull
distribution. This model includes additional parameters to adjust the weight function, allowing for more flexible
modeling of life data and reliability analysis. The generalized version can accommodate different shapes of
hazard functions, including increasing, decreasing, and bathtub-shaped hazard rates. Abbas et al. [8] developed
a new generalized weighted Weibull distribution, which further extends the flexibility of the Weibull distribution.
This model incorporates new parameters to adjust both the scale and shape of the distribution, providing a
better fit for complex data patterns. The generalized weighted Weibull distribution is particularly useful in
survival analysis and reliability engineering. Beaulieu [10] introduced the generalized multinomial distribution,
which extends the standard multinomial distribution by incorporating additional parameters. This generalization
allows for more flexible modeling of categorical data with complex dependencies. The model is particularly useful
in situations where the probabilities of different categories are not fixed but vary according to some underlying
factors. Domma [11] proposed a new generalized weighted Weibull distribution that can model different hazard
rate shapes, including decreasing, increasing, upside-down bathtub, N-shape, and M-shape hazard rates. This
model provides greater flexibility in fitting data with varying hazard rate patterns, making it suitable for
diverse applications in reliability and survival analysis. The extension of the generalized half-normal distribution
by Acitas [12] introduces weighting mechanisms that improve its applicability to real-world data. This new
weighted distribution can better capture the characteristics of skewed data, making it useful in environmental
studies, quality control, and other fields where data may not follow symmetric patterns. Generalized weighted
exponential-Gompertz distribution by Teamah et al. [13]. The generalized weighted exponential-Gompertz
(GWE-G) distribution combines the properties of the exponential and Gompertz distributions with additional
weighting parameters. This model is particularly effective in describing data with monotonically increasing
or decreasing hazard rates, commonly found in demographic studies and reliability engineering. Generalized
probability weighted moments: application to the generalized Pareto distribution by Rasmussen [14]. Rasmussen’s
work provides a framework for estimating parameters of generalized distributions. GPWM is particularly useful
for modeling extreme values and tail behavior of distributions, which is crucial in fields such as finance, hydrology,
and environmental studies.

These generalizations highlight the ongoing efforts to create more flexible and adaptable models that can handle
diverse data characteristics. By introducing new parameters and refining existing ones, researchers can develop
models that provide better fits and more accurate predictions across various fields. Other useful models include
[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].

The remainder of the work is organized as follows; section is on model specification. In section the properties
are studied. In section , the parameters are estimated using maximum likelihood method. In numerical analysis
are presented in section . The article is concluded in section .
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2|Model Specification
Chris-Jerry distribution due to Onyekwere and Obulezi [37] is a one-parameter lifetime model with probability
density function (PDF) and cumulative distribution function (CDF) given respectively as

z (x, θ) = θ2

θ + 2
(
1 + θx2) e−θx, θ > 0, x > 0 (1)

and
Z (x, θ) = 1 −

[
1 + θx (θx + 2)

θ + 2

]
e−θx, θ > 0, x > 0 (2)

proposed a two-parameter Chris-Jerry distribution with p.d.f and CDF given as

g (x, θ, λ) = θ2

λθ + 2
(
λ + θx2) e−θx, θ > 0, λ > 0, x > 0 (3)

and
G (x, θ, λ) = 1 − 1

λθ + 2
(
θ2x2 + 2θx + θλ + 2

)
e−θx (4)

The PDF of the Generalized Weighted Chris-Jerry (GWCJ) distribution with parameters θ, λ, and β is given by

f (x, θ, λ, β) = θβ+1

θλ + β (β + 1)
xβ−1

Γ(β)
(
λ + θx2) e−θx, θ, λ, β > 0, x > 0 (5)

where θ is the scale parameter, λ and β are the shape parameters

Proof : Tesfalem and Shanker [1] provided a basis for this proof. Having
f (x, θ, λ, β) = kw(x, θ, λ, β)g (x, θ, λ) (6)

where k is the normalizing constant, w (x, β) = xβ−1 is the weight function and g (x, θ, λ) is the PDF of the
two-parameter Chris-Jerry distribution. We require to prove that equation (6) is a proper PDF by deriving the
value of k. Hence, it is easy to see that for∫ ∞

0
f (x, θ, λ, β) dx =

∫ ∞

0

kxβ−1θ2

λθ + 2
(
λ + θx2) e−θxdx = 1 (7)

k = (θλ + 2) θβ

(θλ + β(β + 1)) θΓ (β)
Therefore, making appropriate substitutions in equation (6) completes the proof. □

Notice that if X ∼ GWCJ (θ, λ, β), the PDF which is in equation (5) is a two-component mixture of Gamma (θ, β)
and Gamma (θ, β + 2) with mixing proportion θλ

θλ+β(β+1) in the form

pGamma (θ, β) + (1 − p)Gamma (θ, β + 2)
The CDF of the GWCJ distribution with parameters θ, λ and β is given by

F (x, θ, λ, β) = 1 −
[

Γ(β, θx)
Γ(β) + 1

θλ + β (β + 1) (1 + β + θx) θβxβe−θx

]
, x, θ, λ, β > 0 (8)

where Γ(β, θx) =
∫∞

θx
yβ−1e−ydy is the upper incomplete gamma function.

Proof : We begin the proof with integrating the PDF of the proposed GWCJ (x, θ, λ, β) given in equation (5).

F (x, θ, λ, β) =
∫ x

0
f(t, θ, λ, β)dt = θβ+1

[θλ + β(β + 1)]

{
λ

∫ x

0
xβ−1e−θxdx + θ

∫ x

0
xβ+1e−θx

}
(9)

define y = θx then dx = dy
θ , hence

F (x, θ, λ, β) = 1
Γ (β) (θλ + β(β + 1))

{
θλ

∫ θx

0
yβ−1e−ydy +

∫ θx

0
yβ+1e−ydy

}
= θλγ(β, θx) + γ(β + 2, θx)

Γ (β) (θλ + β(β + 1))
(10)
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Note: The following special derivations from the gamma function were employed;
Γ(β + 1, x) = βΓ(β, x)+xβe−x; Γ(β) = γ(β, x)+Γ(β, x); Γ(β + 2, θx) = β(β+1)Γ(β, θx)+(β+1)(θx)βe−θx+(θx)β+1e−θx

Making appropriate substitutions from the special derivations into equation (10), we complete the proof. □

It is easy to define from equation (8) the survival function of GWCJ distribution Let X ∼ GWCJ(θ, λ, β), the
survival function is given as

S(x, θ, λ, β) = Γ(β, θx)
Γ(β) + 1

θλ + β (β + 1) (1 + β + θx) θβxβe−θx (11)

We use the survival function as a measure of system reliability. The hazard rate function which measures the
likelihood that an item will survive to a certain point in time based on its survival to an earlier time t. Let
X ∼ GWCJ(θ, λ, β), the hazard rate function is given as

hrf(x, θ, λ, β) =
θβ+1xβ−1 (λ + θx2) e−θx

Γ(β, θx) (θλ + β(β + 1)) + Γ(β) (1 + β + θx) θβxβe−θx
(12)

Another very important measure is the reversed hazard rate function. It is the conditional probability of failures
of an item in the next dt units of time given that it did not fail before t. It is essential in analyzing censored
data and is commonly used in Forensic sciences (see Kayid [2]). Let X ∼ GWCJ(θ, λ, β), the reversed hazard
rate function is given as

rhrf(x, θ, λ, β) =
θβ+1

θλ+β(β+1)
xβ−1

Γ(β)
(
λ + θx2) e−θx

1 −
[

Γ(β,θx)
Γ(β) − 1

θλ+β(β+1) (1 + β + θx) θβxβe−θx
] (13)

The cumulative hazard rate function provides the total accumulated risk of experiencing the event of interest
that has been gained by progressing to time t. While the instantaneous hazard rate hrf(t) can increase or
decrease with time, the cumulative hazard rate can only increase or remain the same. Let X ∼ GWCJ(θ, λ, β),
the cumulative hazard rate function is given as

chrf(x, θ, λ, β) = − ln S(x, θ, λ, β) = − ln
(

Γ(β, θx)
Γ(β) + 1

θλ + β (β + 1) (1 + β + θx) θβxβe−θx

)
(14)

3|Mathematical Properties
In this section, we derive some important properties of the GWCJ distribution

Moment. Let X ∼ GWCJ(θ, λ, β), the rth non-central moment is given as

µ
′

r = Γ(β + r)
Γ(β)

{
λθ1−r + θ−r (β + r + 1) (β + r)

}
(θλ + β(β + 1)) ; r = 1, 2, ... (15)

Proof : The rth non-central moment of a continuous distribution is given by

µ
′

r = EXr =
∫

R

xrf(x)dx (16)

where f(x) is the density function and in this case given in equation (5). Therefore,

µ
′

r =
∫ ∞

0
xr θβ+1

θλ + β (β + 1)
xβ−1

Γ(β)
(
λ + θx2) e−θxdx

= θβ+1

{θλ + β (β + 1)} Γ(β)

{
λ

∫ ∞

0
xβ+r−1e−θxdx + θ

∫ ∞

0
xβ+r+1e−θxdx

}
= θβ+1

{θλ + β (β + 1)} Γ(β)

{
λΓ(β + r)

θβ+r
+ θΓ(β + r + 2)

θβ+r+2

}
= 1

{θλ + β (β + 1)} Γ(β)

{
λΓ(β + r)

θr−1 + Γ(β + r + 2)
θr

}
(17)
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fig 1a: pdf of GWCJ  distribution
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fig 1b: pdf of GWCJ  distribution
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fig 1c: cdf of GWCJ  distribution
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fig 1d: cdf of GWCJ  distribution
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Figure 1. PDF and CDF of the GWCJ distribution

□

Let X ∼ GWCJ(θ, λ, β), then the mean, 2nd, 3rd and 4th non-central moments are respectively

µ = θλβ + β (β + 1) (β + 2)
θ2λ + θβ (β + 1) (18)

µ
′

2 = θλβ (β + 1) + β (β + 1) (β + 2) (β + 3)
θ3λ + θ2β (β + 1) (19)

µ
′

3 = θλβ (β + 1) (β + 2) + β (β + 1) (β + 2) (β + 3) (β + 4)
θ4λ + θ3β (β + 1) (20)
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fig 2a: Reliability function of GWCJ  distribution
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fig 2b: Reliability function of GWCJ  distribution
x

R
(x

)

θ = 1  λ = 0.5  β = 1
θ = 1  λ = 1.5  β = 0.5
θ = 2  λ = 1  β = 2.5
θ = 1.5  λ = 1.5  β = 1

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fig 2c: hazard function of GWCJ  distribution
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fig 2d: hazard function of GWCJ  distribution
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Figure 2. survival and hazard rate function of the GWCJ distribution

and

µ
′

4 = θλβ (β + 1) (β + 2) (β + 3) + β (β + 1) (β + 2) (β + 3) (β + 4) (β + 5)
θ5λ + θ4β (β + 1) (21)

This follows easily from substituting 1, 2, 3 and 4 respectively for r in equation (15).

[Variance of the GWCJ distribution] The variance of a random variance is a measure of spread which is generally
denoted by σ2 = µ

′

2 − (µ1)2. From a random variable X that is GWCJ distributed, the variance is given as

σ2 = θλβ (β + 1) + β (β + 1) (β + 2) (β + 3)
θ3λ + θ2β (β + 1) −

(
θλβ + β (β + 1) (β + 2)

θ2λ + θβ (β + 1)

)2

(22)
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[Kurtosis] Kurtosis is another measure that explains the peakness of a distribution. Suppose X ∼ GWCJ
(θ, λ, β), the kurtosis can be measured as follows;

ρ = µ
′

4 − 4µµ
′

3 + 6(µ)2µ
′

2 − 4(µ)4

σ4 = (23)

θλβ(β+1)(β+2)(β+3)+β(β+1)(β+2)(β+3)(β+4)(β+5)
θ5λ+θ4β(β+1) − 4

(
θλβ+β(β+1)(β+2)

θ2λ+θβ(β+1)

)(
θλβ(β+1)(β+2)+β(β+1)(β+2)(β+3)(β+4)

θ4λ+θ3β(β+1)

)

+6
(

θλβ+β(β+1)(β+2)
θ2λ+θβ(β+1)

)2(
θλβ(β+1)+β(β+1)(β+2)(β+3)

θ3λ+θ2β(β+1)

)
− 4
(

θλβ+β(β+1)(β+2)
θ2λ+θβ(β+1)

)4

σ4
(24)

[Skewness] Skewness is an important measure that indicates where the weight of the distribution is. Given X ∼
GWCJ(θ, λ, β), the measure of skewness is expressed as;

κ = µ
′

3 − 3µµ
′

2 + 2(µ)2

σ
3
2

=

θλβ(β+1)(β+2)+β(β+1)(β+2)(β+3)(β+4)
θ4λ+θ3β(β+1) − 3 θλβ+β(β+1)(β+2)

θ2λ+θβ(β+1)
θλβ(β+1)+β(β+1)(β+2)(β+3)

θ3λ+θ2β(β+1) + 2
(

θλβ+β(β+1)(β+2)
θ2λ+θβ(β+1)

)2

σ
3
2

(25)

3.1|Odd Function
An odd function is a reliability tool for modeling a data set that shows a non-monotone hazard rate. It is defined
to be the ratio of the CDF to the Survival function

OGW CJ(x; θ, λ, β) = FGW CJ(x; θ, λ, β)
SGW CJ(x; θ, λ, β) (26)

OGW CJ(x; θ, λ, β) =
1 −

[
Γ(β,θx)

Γ(β) − 1
θλ+β(β+1) (1 + β + θx) θβxβe−θx

]
Γ(β,θx)

Γ(β) + 1
θλ+β(β+1) (1 + β + θx) θβxβe−θx

= Γ(β)
Γ(β, θx)+θλ + β(β + 1)

1 + β + θx
θ−βx−βeθx−1

(27)

3.2|Index of Dispersion
Index of dispersion is a normalized measure of the dispersion of a probability distribution which is used to
quantify whether a set of observed occurrences are clustered or dispersed compared to a standard statistical
model.

ξ = σ2

µ
=
[(

θλβ (β + 1) + β (β + 1) (β + 2) (β + 3)
θ3λ + θ2β (β + 1) −

(
θλβ + β (β + 1) (β + 2)

θ2λ + θβ (β + 1)

)2)
÷ θλβ + β (β + 1) (β + 2)

θ2λ + θβ (β + 1)

]
(28)

3.3|Distribution of the Order Statistics
Given an ordered sample X(1), X(2), · · · , X(n) from a GWCJ distribution. The distribution of the statistics is

fr:n(x; θ, λ, β) = n!
(r − 1)!(n − r)!fGW CJ(x; θ, λ, β)

[
FGW CJ(x; θ, λ, β)

]r−1[1 − FGW CJ(x; θ, λ, β)
]n−r (29)
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where fGW CJ(x; θ, λ, β) and FGW CJ(x; θ, λ, β) are the pdf and cdf of GWCJ distribution respectively. Hence,
we have
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fr:n(x; θ, λ, β) =
n!

(r − 1)!(n − r)!
θβ+1

θλ + β (β + 1)
xβ−1

Γ(β)
(
λ + θx2) e−θx

{
1 −

[
Γ(β, θx)

Γ(β) − 1
θλ + β (β + 1) (1 + β + θx) θβxβe−θx

]}r−1

{
Γ(β, θx)

Γ(β) − 1
θλ + β (β + 1) (1 + β + θx) θβxβe−θx

}n−r

(30)

The PDF of the largest order statistics is gotten by setting r = n

nθβ+1

θλ + β (β + 1)
xβ−1

Γ(β)
(
λ + θx2) e−θx

{
1 −

[
Γ(β, θx)

Γ(β) − 1
θλ + β (β + 1) (1 + β + θx) θβxβe−θx

]}n−1

(31)

The PDF of the smallest order statistics is gotten by setting r = 1

nθβ+1

θλ + β (β + 1)
xβ−1

Γ(β)
(
λ + θx2) e−θx

{
Γ(β, θx)

Γ(β) − 1
θλ + β (β + 1) (1 + β + θx) θβxβe−θx

}n−1

(32)

3.4|Generating Functions
An endless series of numbers can be encoded using a generating function in mathematics by treating them as
the coefficients of a formal power series.

3.4.1|Moment Generating Function
The moment-generating function of a real-valued random variable is an alternative specification of its probability
distribution in probability theory and statistics. Instead of using probability density function or cumulative
distribution functions directly, it provides the foundation for an alternative path to analytical solutions.

The moment generating function of a X ∼ GWCJ (θ, λ, β) is given by

MX(t) = E(etx) =
∫ ∞

0
etxf(x)dx

= θβ+1

θλ + β(β + 1)Γ(β)

∫ ∞

0
etxxβ−1(λ + θx2)e−θxdx

= θβ+1

θλ + β(β + 1)Γ(β)

∫ ∞

0
xβ−1(λ + θx2)e−(θ−t)xdx

= θβ+1

θλ + β(β + 1)Γ(β)

[
λ

∫ ∞

0
xβ−1e−(θ−t)xdx + θ

∫ ∞

0
xβ+1e−(θ−t)xdx

]

= θβ+1

θλ + β(β + 1)Γ(β)

[
λΓ(β)

(θ − t)β
+ θΓ(β + 2)

(θ − t)β+2

]
(33)

3.4.2|Characteristic Generating Function
In probability theory and statistics, the characteristic function of any real-valued random variable completely
defines its probability distribution. Unlike the moment-generating function, the characteristic function always
exists when treated as a function of a real-valued argument.
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The characteristic function of a X ∼ GWCJ(θ, λ, β) is given by

ϕX(it) = θβ+1

θλ + β(β + 1)Γ(β)

[
λΓ(β)

(θ − it)β
+ θΓ(β + 2)

(θ − it)β+2

]
(34)

4|Maximum Likelihood Estimation of the Parameters
Let

(
x1, x2, ..., xn

)
be a random sample of size n drawn from GWCJ distribution, then the likelihood function is

given as

L
(
fGW CJ(x; θ, λ, β)

)
=

n∏
i=1

θβ+1

θλ + β(β + 1)
xβ−1

i

Γ(β) (λ + θx2
i )e−θxi = θn(β+1)e−θ

∑
xi

(θλ + β(β + 1))nΓ(β)n

n∏
i=1

xβ−1
i (λ + θx2

i )

(35)
Taking the natural log of L(.) and set log Lϕ, we have

ϕ = n(β + 1) log θ − θ
∑

xi − n log Γ(β) − n log(θλ + β(β + 1)) +
∑

log xβ−1
i +

∑
log(λ + θx2

i ) (36)

Differentiating partially with respect to θ, λ and β yields the following;

∂ϕ

∂θ
= n(β + 1)

θ
−

n∑
i=1

xi − nλ

θλ + β(β + 1) +
n∑

i=1

x2
i

λ + θx2
i

∂ϕ

∂λ
= − nθ

θλ + β(β + 1) +
n∑

i=1

1
λ + θx2

i

∂ϕ

∂β
= n log θ − nΓ′(β)

Γ(β) − n(2β + 1)
θλ + β(β + 1) +

n∑
i=1

log xi

(37)

The system of non-linear equations in (37) do not possess analytical solution hence optim() function in R will
be used to obtain the solution, see [42].

5|Numerical Analysis
This section is used to illustrate the applicability of the proposed distribution to life time data. Data-
I is the remission times (in months) of a sample of 128 bladder cancer patients documented by Lee
and Wang [5], see table 1. Data-II and III consist of the mortality rate of children in Japan and Ireland
under five years of age from 1969 to 2021 respectively. The data are presented in table 2 and 3 which were obtained
https://data.worldbank.org/indicator/SP.DYN.IMRT.IN https://data.worldbank.org/indicator/SP.DYN.IMRT.IN
(accessed on 21 July 2024). We provide the model comparison using the following measures; log-likelihood
(LL) statistic, Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC), Bayesian
Information Criterion (BIC) and the Hannan Quinn Information Criterion (HQIC). Further, we provide the
fitness of the model to the data sets using the Cramér von Mises (W) statistics, Anderson-Darling (A) statistics,
Kolmogorov-Smirnov (KS) statistics with its p-value. From the results in table 4, the GWCJ distribution fits
the data better than the rest of the distributions compared and also performed adequately in estimating the
parameters. However, from the bloated value of λ̂MLE, there is indication of poor estimation. In table 5, the
GWCJ competes favourably while it is better than the competitors in table 6. Figures 7, 8 and 9 represent
the histogram, CDF, survival function, TTT plot, PP and QQ plots of the three data sets respectively. They
visually tell how well the distribution fits the associated data sets.

6|Conclusion
Generalization of distributions has inadvertently proved useful in the statistical literature especially in shaping
the decision on the choice of the number of parameters and weighting a random variable. In this article, we
generalized the length-biased Chris-Jerry distribution proposed by Subramanian and Subhashree [6] and the
weighted Chris-Jerry distribution by Praseeja et al. [7]. The functional form of the distribution including the
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Table 1. Data-I The remission times (in months) of a sample of 128 bladder cancer patients

3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 15.96 36.66
1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12
46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64
17.36 1.40 3.02 4.34 5.71 7.93 0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63
0.20 2.23 3.5 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80
25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28
9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 11.79 18.10
1.46 4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02 3.31
4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07 21.73 2.00 3.36 6.93 8.65
12.63 22.69

Table 2. Data-II The mortality rate of children in Japan under five years of age from 1969 to
2021

39.7 36.2 32.9 29.8 27.0 24.6 22.7 21.0 19.6 18.5 17.5 16.5 15.7 14.8 14.0 13.3 12.5
11.8 11.1 10.5 9.9 9.3 8.8 8.3 7.9 7.5 7.1 6.8 6.6 6.5 6.3 6.2 6.1 6.0
5.9 5.7 5.5 5.2 5.0 4.7 4.5 4.3 4.1 4.0 3.9 3.7 3.6 3.5 3.4 3.3 3.2
3.2 3.0 2.9 2.8 2.8 2.7 2.6 2.5 2.5 2.4 2.3

Table 3. Data-III The mortality rate of children in Ireland under five years of age from 1969
to 2021

35.3 33.8 32.5 31.3 30.0 28.6 27.1 25.5 24.1 23.0 22.2 21.7 21.4 21.1 20.6 20.0 19.1
18.0 16.8 15.6 14.3 13.2 12.4 11.7 11.1 10.7 10.4 10.1 9.9 9.6 9.1 8.6 8.1 7.7
7.4 7.3 7.3 7.3 7.3 7.3 7.1 6.9 6.5 6.0 5.6 5.2 4.9 4.6 4.4 4.3 4.2
4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1

Table 4. Measures of Model Adequacy using Data-I

Dist LL AIC CAIC BIC HQIC W A KS p-value θ̂MLE λ̂MLE β̂MLE
GWCJ -412.8 831.594 831.788 840.150 835.071 0.104 0.625 0.066 0.626 0.142 307.490 1.211
Perks -414.32 832.634 832.730 838.338 834.952 0.125 0.747 0.079 0.395 17.923 0.110

Gamma -413.36 830.727 830.823 836.431 833.044 0.119 0.716 0.073 0.498 1.172 0.125
Weibull -414.08 832.159 832.255 837.863 834.477 0.131 0.782 0.070 0.559 9.558 1.047
Gumbel -432.25 868.498 868.594 874.202 870.816 0.446 2.753 0.112 0.081 5.644 5.422

Table 5. Measures of Model Adequacy using Data-II

Dist LL AIC CAIC BIC HQIC W A KS p-value θ̂MLE λ̂MLE β̂MLE
GWCJ -68.08 142.152 142.566 148.534 144.658 0.213 1.346 0.128 0.261 2.063 11.739 2.151
Perks -72.33 148.653 148.856 152.907 150.323 0.300 1.809 0.141 0.167 0.463 1.353

Gamma -68.48 140.954 141.157 145.208 142.624 0.219 1.385 0.125 0.285 2.044 1.629
Weibull -69.76 143.523 143.727 147.777 145.193 0.261 1.594 0.125 0.290 1.395 1.459
Gumbel -73.42 150.831 151.035 155.086 152.502 0.309 1.882 0.146 0.140 0.848 0.632

PDF, CDF, Survival function and hazard were presented. The graphical illustration of these functions were also
provided. The characteristics of the distribution were studied. The parameters of the model were estimated
using the maximum likelihood estimation procedure. To illustrate the importance of the model, three lifetime
data sets were used and the model proved better than some classical models.
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Table 6. Measures of Model Adequacy using Data-III

Dist LL AIC CAIC BIC HQIC W A KS p-value θ̂MLE λ̂MLE β̂MLE
GWCJ 85.91 -165.830 -165.416 -159.449 -163.324 0.263 1.630 0.133 0.222 20.390 1.528 1.757
Perks 81.99 -159.982 -159.778 -155.728 -158.312 0.330 1.998 0.171 0.054 1.389 13.189

Gamma 85.39 -166.771 -166.567 -162.517 -165.100 0.276 1.702 0.142 0.167 1.672 16.825
Weibull 83.68 -163.368 -163.164 -159.113 -161.697 0.316 1.924 0.135 0.208 0.108 1.250
Gumbel 78.11 -152.213 -152.213 -147.959 -150.543 0.413 2.455 0.164 0.071 0.063 0.053
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Figure 7. Plots for Data-I
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Figure 8. Plots for Data-II
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Figure 9. Plots for Data-III
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