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Abstract

Coronoid systems are actually geometric arrangements of six-sided benzenoids in hexagonal form. Coronoid
systems are organic chemical structures, that fall into two categories: primitive and catacondensed
coronoids. Many researchers from various fields have an interest in the mathematical analysis of chemicals.
Graph theory played an important role in studying chemical structures by transforming them into a graph.
The strongιmetricιdimension is one of the main parameter ofιgraph theory. Consider a connectedιgraphιG,
aιvertexιu strongly resolves aιpairι(x, y) of vertices if either x lies onιaιshortestιpathιbetween u− y or y
lies onιaιshortestιpathιbetween u− x. The setιS is referred as theιstrong resolving set ofιG if any vertex
in S can strongly resolve every pair of distinct vertices in G.ιThe minimumιcardinality of such set S is
known as the strong metricιdimension ofιG.
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1|Introduction
Graph theory is a field of study in mathematics concerned with network structure and object interaction. Graph
theory has numerous applications far beyond mathematics. Some of the significant applications of graph theory
are in aviation networks, map directions, algorithms used by search engines, traffic signals, solving sudoku’s
puzzles, epidemiology, and many more. Chemical graph theory is recognized as a wide rang field that combines
mathematics and chemistry. It focuses on using mathematics to comprehend chemical structures by transforming
them into graphs. Chemical structures are transformed into graphs by turning atoms into vertices and lines
joining atoms into edges. Different parameters captivate the attention of many researchers to study chemical
structures, and the identification of vertices is one of them.

The challenge of uniquely identifying the vertices in a graph attracted many researchers because of its widespread
applications. Many researchers worked on uniquely identifying the vertices by using different useful concepts of
graph theory including coloring, labeling, covering of vertices, and by definingιthe metric on graphs.

Vertex identification by defining metrics on graphs has numerous applications in chemical graph theory and
computer networks including network discovery [5], navigation of robots [20], game strategies by using resolving
sets in a hamming graph [12], to study digital images, resolving sets have been proposed in triangular, rectangular,
and hexagonal grids [37] and coins weighing problems [46]. Afterwards, many researchers extended the idea of
metric identification of vertices by determining different parameters of metric dimension including fractional
[4], double [10], independent [11], weighted [14], k-metric [16], solid [17], local [40], mixed [19], connected [42]
andιtheιstrongιmetricιdimension [45].

Consider aιconnectedιgraphιG with vertex set V (G). A path is a sequence of non-repeated vertices
connected through edges. Distance is defined as the length of the shortest path connecting two vertices
ψ, χιandιdenotedιbyιd(ψ, χ). Inspired by the issue of uniquely identifying the vertices of aιgraph,ιthe idea of
locatingιsets was presented by Slater in [47]. After that Harary and Melter independently introduced a similar
idea in [18] where they name locating sets as resolving sets. We use the term resolving sets throughout our work.
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A pair of vertices ξ, ζ ∈ V (G) resolves byιaιvertex x ∈ V (G)ιif distanceιbetween ξ and x isιnot equal to distance
between ζ and x mathematically d(ξ, x) ̸= d(x, ζ). A set of vertices W in G said to be resolvingιset of Gιif each
pairιof uniqueιvertices in G can be resolvedιby anyιvertex inιW . Cardinalityιof minimum resolvingιsetιisιcalled
the metricιdimensionιofιG.

Theιstrongιmetricιdimensionιis more defined parameterιthanιtheιmetricιdimensionιwas originally introducedιin
[45] by Sebö and Tannier and further studied by numerous researchers in many papers. That is aιvertexιx ∈
V (G)ιstrongly resolves twoιvertices a, b ∈ V (G)ιifιa shortestιpathιbetweenι(x, a) contains b or a shortest path
between (x, b) contains a. A set ofιverticesιW ⊆ V (G) is calledιstrong resolvingιset of G if each pair of distinct
vertices ofιG isιstrongly resolved byιany vertex in W the minimumιcardinalityιof overall strongιresolving sets of
G isιcalledιthe strongιmetricιdimension ofιG,ιdenoted as Sdim(G) [45].

After SeböιandιTannier many researchers extend theιstudyιof theιstrongιmetricιdimension. The concept
ofιstrongιmetricιdimensionιhasιbeen studied in some convex polytopes in [24] and in [43], in convex plane
graph [1], in some famous graphs [27], in hamming graphs [25], in sunflower, friendship, helm and t-fold wheel
graphs [26], in direct product graphs [28], in generalized sierpiriski graph [15], in power graph of finite groups
[34], in anti-prism and king graphs [38], in zero divisor graph of rings [6], in distance hereditary graphs [35], in
some graphs and their compliment [50], in cartesian sum graphs [31], in windmill graph Km

n , sun graph Sn and
mobius ladder graphs Mn [49], in generalized butterfly, starbarbell, and Cm ⊙ Pn graphs [36], in crossed prism
[51].

Cartesianιproduct, directιproduct, rooted product,ιlexicographicιproduct, strong product and corona product
are some common graph products, also called standard products. For such classes of graphs a lot of graphs
invariant are studied to calculate their exact values or to predicting their action based on theιfactor graphs.ιThe
strong metricιdimension of the graph’s products also has been investigated in the following published articles.
In some families of direct product graph [28], rooted productιgraphs [30], lexicographicιproduct [29], strong
product, corona product, graphs and digraphs, cartesian and direct product of graph has been investigated in
[32, 33, 39, 41].

In this article, we investigate the strong metric dimension of the hollow coronoid structure. Different variants
of metric dimension have been studied on hollow coronoid structures in the following articles. Metric and
fault-tolerant metric dimension in [21], edge metric and fault-tolerant edge metric dimension in [22] and mixed
metric dimension of hollow coronoid in [23]. Vertex identification through the definition of a metric on a graph
has many applications in computer networks [52] and chemical graph theory [53, 54], such as network discovery,
robot navigation, the study of digital images, resolving sets in triangular, rectangular, and hexagonal grids, and
coin weighing problems. Subsequently, numerous scholars expand upon the concept of metric vertex identification
by ascertaining various metric dimension characteristics, such as fractional, double, independent, weighted,
k-metric, solid, local, mixed, linked, and strong metric dimensions. Additional uses include resource allocation in
transportation networks [55, 56], researching the dissemination of information in social networks [57], identifying
anomalies in cyber-physical systems, and examining epidemic trends in epidemiology.

In conclusion, this work creates a wealth of opportunities for additional theoretical research on the metric
dimensions of chemical structures, algorithm development, and practical applications. Expanding upon these
discoveries may reveal novel perspectives at the nexus of graph theory, metric geometry, and chemistry[58].

2|Working approach
Now we are formalizing all the necessary terminology and notations that we will use throughout the article.
LetιG denote a connectedιgraph shown in Figure 2, where the vertexιsetιofιG isιdenotedιbyιV (G)ιandιthe
edgeιsetιofιG byιE(G). In a graph G if two vertices m,n share an common edge between them then they are
called adjacent vertices and denoted by m ∼ n. A vertex set containing all the adjacent vertices of m is called
neighborhood of m and denoted as N(m), sometimes N(m) is called open neighborhood of m. Aιvertex ϑ
stronglyιresolvesιa pair (ϱ, φ) of distinct verticesιif either d(ϑ, ϱ) = d(ϑ, φ) +d(φ, ϱ) or d(ϑ, φ) = d(ϑ, ϱ) +d(ϱ, φ).
In our work we take help from the following result of Kratica et al. [24] to find which pair of distinct vertices
cannot be strongly resolves by any vertex of G.
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Figure 2. AιGraph

Lemma 1. [24] Let (γ, δ) be a pairsιof verticesιin aιconnected graphιG such that
d(γ, δ) ≥ d(ω, δ) ∀ ω ∈ N(γ) and d(γ, δ) ≥ d(ω, γ) ∀ ω ∈ N(δ) (1)

Thenιthere isιno vertex inιV (G) − {γ, δ} which performs the strong metric identificationιfor the pair (γ, δ).

To examine theιstrongιmetricιdimensionιof hollow coronoid weιuse the concept ofιstrong resolvingιgraph
which was proposed by Ollermann andιFransen in [39]. If a pair (ξ, ζ) ∈ V (G) of distinct vertices satis-
fied both the condition in (1) then the vertices areιsaidιtoιbe mutuallyιmaximallyιdistant,ιdenoted as ξMMDζ.
Theιstrongιresolvingιgraphιof a graphιG is aιgraph GSR withιvertexιset contained all MMD vertices and there
is an edge between two vertices if and if they are MMD with each others in original graph G.

If W ⊆ V (G) then W is aιvertexιcoverιofιGιif everyιedgeιinιG isιincidentιwith someιvertex of W and the
cardnality ofιminimum vertexιcover of G is called vertex cover number or covering number of G denotedιbyιτ(G)
[48]. In the following theorem Ollerman and Fransen established a relationship between covering number of
strong resolving graph GSR and the strongιmetric dimension.

Theorem 2. [39] For anyιconnected graph G,
sdim(G) = τ(GSR).

Throughout our work notation Kl represent complete graph and Cl represent cycle graph. We have the following
remark according to the definition of vertex cover number.

Remark 3. Assume that G is a connected graph, then

(1) If G is complete graph Kl on l ≥ 2 vertices, then τ(G) = l − 1.

(2) If G is cycle graph on l ≥ 3 vertices, then τ(G) = ⌈ l
2 ⌉.

3|Construction of hollow coronoid HC(x, y, z)
The name coronoid was coined in 1987 [9] due to its potential link with benzenoid. Since coronoid is a benzenoid
with a central hole. A particular kind of polyhex system having origins in organic chemistry is referred to
as a "coronoid". Hollow coronoid contained six sides x, y, z, x′

, y
′
, z

′ as shown in Figure 3. It drives from the
catacondensed coronoids and is a member of the primitive coronoid [7].

A new type of hollow coronoid structure has been identified in [44]. In [8, 2, 3] author discussed mathematical
study of coronoid and related structures. [13] describes the relationship between the hollow coronoid and the
polyhex..

Our study examines a six-sided x = x
′ = y = y

′ = z = z
′ hollow coronoid, however the three sides (x, y, z) are

symmetric to the other three sides (x′
, y

′
, z

′). Hollow coronoid label as HC(x, y, z) with x, y, z ≥ 2. Hollow
coronoid contained total 8(x+ y + z − 3) vertices and 10(x+ y + z − 3) edges from which 4(x+ y + z − 3) are
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Figure 3. Hollow Coronoid x = y = z = 4

of degreeι2 andιthe same number ofιvertices with degreeι3. The description of the vertexιand edgeιset of a
hollowιcoronoidιstructureιHC(x, y, z) is given as:

V (HC(x, y, z)) = {pi, p
′
i : 1 ≤ i ≤ 2x− 1} ∪ {si, s

′
i : 1 ≤ i ≤ 2z − 1}

∪ {qi, q
′
i : 1 ≤ i ≤ 2y − 1} ∪ {ri, r

′
i : 1 ≤ i ≤ 2x− 3}

∪ {ti, t′i : 1 ≤ i ≤ 2z − 3} ∪ {ui, u
′
i : 1 ≤ i ≤ 2y − 3} ,

E(HC(x, y, z)) =
{
pipi+1, p

′
ip

′
i+1 : 1 ≤ i ≤ 2x− 2

}
∪

{
qiqi+1, q

′
iq

′
i+1 : 1 ≤ i ≤ 2y − 2

}
∪

{
sisi+1, s

′
is

′
i+1 : 1 ≤ i ≤ 2z − 2

}
∪

{
riri+1, r

′
ir

′
i+1 : 1 ≤ i ≤ 2x− 4

}
∪

{
uiui+1, u

′
iu

′
i+1 : 1 ≤ i ≤ 2y − 4

}
∪

{
titi+1, t

′
it

′
i+1 : 1 ≤ i ≤ 2z − 4

}
∪

{
tisi+1, t

′
is

′
i+1 : 1 ≤ i(odd) ≤ 2z − 3

}
∪

{
ripi+1, r

′
ip

′
i+1 : 1 ≤ i(odd) ≤ 2x− 3

}
∪

{
uiqi+1, u

′
iq

′
i+1 : 1 ≤ i(odd) ≤ 2y − 3

}
∪

{
q1s2z−1, q

′
is

′
2z−1, s1p1, s

′
2z−1p

′
2x−1

}
∪

{
p′

1q
′
1, p

′
2x−1q2y−1, t2z−3u1, t

′
1u2y−3, t1r1, t

′
2z−3r2x−3, u

′
1r

′
1, r

′
2x−3u2y−3

}
.

4|Results
Lemma 4. The strong resolving graph of HC(x, y, z) where x = y = z ≥ 2 is isomorphic to (x+y+z−6)K4+3C4.
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Proof : In order to construct HC(x, y, z)SR we find each pair (u, v) of vertices in HC(x, y, z) such that uMMDv.
For the MMD pairs of vertices consider the table 1 It follows according to Table 1 all pairs of vertices satisfies

Table 1. MMD pairs of vertices in HC(x, y, z)

(x, y) d(x, y) d(x, a) ∀ a ∈ N(y) d(b, y) ∀ b ∈ N(x)
(pi+1, ri) for 2 ≤ i(even) ≤ 2x− 4 d(pi+1, ri) = 3 d(pi+1, a) = 2 d(b, ri) = 2
(p′

i+1, r
′
i) for 2 ≤ i(even) ≤ 2x− 4 d(p′

i+1, r
′
i) = 3 d(p′

i+1, a) = 2 d(b, r′
i) = 2

(si+1, ti) for 2 ≤ i(even) ≤ 2z − 4 d(si+1, ti) = 3 d(si+1, a) = 2 d(b, ti) = 2
(s′

i+1, t
′
i) for 2 ≤ i(even) ≤ 2z − 4 d(s′

i+1, t
′
i) = 3 d(s′

i+1, a) = 2 d(b, t′i) = 2
(qi+1, ui) for 2 ≤ i(even) ≤ 2y − 4 d(qi+1, ui) = 3 d(qi+1, a) = 2 d(b, ui) = 2
(q′

i+1, u
′
i) for 2 ≤ i(even) ≤ 2y − 4 d(q′

i+1, u
′
i) = 3 d(q′

i+1, a) = 2 d(b, u′
i) = 2

(ri, r
′
i) for 2 ≤ i(even) ≤ 2x− 4 d(ri, r

′
i) = 6x− 9 d(ri, a) = 6x− 10 d(b, r′

i) = 6x− 10
(ti, u′

i) for 2 ≤ i(even) ≤ 2z − 4 d(ti, u′
i) = 6z − 9 d(ti, a) = 6z − 10 d(b, u′

i) = 6z − 10
(ui, t

′
i) for 2 ≤ i(even) ≤ 2y − 4 d(ui, t

′
i) = 6y − 9 d(ui, a) = 6y − 10 d(b, t′i) = 6y − 10

(pi, r
′
i−1) for 3 ≤ i(odd) ≤ 2x− 3 d(pi, r

′
i−1) = 6x− 8 d(pi, a) = 6x− 9 d(b, r′

i−1) = 6x− 9
(si, u

′
i−1) for 3 ≤ i(odd) ≤ 2z − 3 d(si, u

′
i−1) = 6z − 8 d(si, a) = 6z − 9 d(b, u′

i−1) = 6z − 9
(qi, t

′
i−1) for 3 ≤ i(odd) ≤ 2y − 3 d(qi, t

′
i−1) = 6y − 8 d(qi, a) = 6y − 9 d(b, t′i−1) = 6y − 9

(p′
i, ri−1) for 3 ≤ i(odd) ≤ 2x− 3 d(p′

i, ri−1) = 6x− 8 d(p′
i, a) = 6x− 9 d(b, ri−1) = 6x− 9

(s′
i, ui−1) for 3 ≤ i(odd) ≤ 2z − 3 d(s′

i, ui−1) = 6z − 8 d(s′
i, a) = 6z − 9 d(b, ui−1) = 6z − 9

(q′
i, ti−1) for 3 ≤ i(odd) ≤ 2y − 3 d(q′

i, ti−1) = 6y − 8 d(q′
i, a) = 6y − 9 d(b, ti−1) = 6y − 9

(pi, p
′
j), i ̸= j for i, j ∈ {1, 2x− 1} d(pi, p

′
j) = 4x− 1 d(pi, a) = 4x− 2 d(b, p′

j) = 4x− 2
(si, q

′
j), i ̸= j for i, j ∈ {1, 2z − 1} d(si, q

′
j) = 4z − 1 d(si, a) = 4z − 2 d(b, q′

j) = 4z − 2
(qi, s

′
j), i ̸= j for i, j ∈ {1, 2y − 1} d(qi, s

′
j) = 4y − 1 d(qi, a) = 4y − 2 d(b, s′

j) = 4y − 2

a b

Figure 4. (a) is a C4 and (b) is a K4

both the condition in (1) so, vertices in each pairs are MMD with each other.

Now, consider the pair (pi, p
′
i) for 1 ≤ i(odd) ≤ 2x− 1. Note that,

d(pi, p
′
i) =

{
6x− 7 , 3 ≤ i(odd) ≤ 2x− 3,
6x− 5 , i = {1, 2x− 1}.

and for a ∈ N(p′
i), b ∈ N(pi)

d(pi, a) = d(b, p′
i) =

{
6x− 8 , 3 ≤ i(odd) ≤ 2x− 3,
6x− 6 , i = {1, 2x− 1}.

the pair (pi, p
′
i) satisfied both the conditions in (1) as d(pi, a) = d(b, p′

i) ≤ d(pi, p
′
i). So, piMMDp′

i with each
other.

Now, consider the pair (qi, s
′
i) for 1 ≤ i(odd) ≤ 2y − 1. Note that,

d(qi, s
′
i) =

{
6y − 7 , 3 ≤ i(odd) ≤ 2y − 3,
6y − 5 , i = {1, 2y − 1}.
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and for a ∈ N(s′
i), b ∈ N(qi)

d(qi, a) = d(b, s′
i) =

{
6y − 8 , 3 ≤ i(odd) ≤ 2y − 3,
6y − 6 , i = {1, 2y − 1}.

the pair (qi, s
′
i) satisfied both the conditions in (1) as d(qi, a) = d(b, s′

i) ≤ d(qi, s
′
i). So, qiMMDs′

i with each
other.

Now, consider the pair (si, q
′
i) for 1 ≤ i(odd) ≤ 2z − 1. Note that,

d(si, q
′
i) =

{
6z − 7 , 3 ≤ i(odd) ≤ 2z − 3,
6z − 5 , i = {1, 2z − 1}.

and for a ∈ N(q′
i), b ∈ N(si)

d(si, a) = d(b, q′
i) =

{
6z − 8 , 3 ≤ i(odd) ≤ 2z − 3,
6z − 6 , i = {1, 2z − 1}.

the pair (si, q
′
i) satisfied both the conditions in (1) as d(si, a) = d(b, q′

i) ≤ d(si, q
′
i). So, siMMDq′

i with each other.
We construct the following vertex and edge set of HC(x, y, z)SR from MMD pairs of vertices in HC(x, y, z).

V (HC(x, y, z)SR) = {p1, p3, . . . , p2x−1, p
′

1, p
′

3, . . . , p
′

2x−3} ∪ {s1, s3, . . . , s2z−1, s
′

1, s
′

3, . . . , s
′

2z−3}

∪ {q1, q3, . . . , q2y−1, q
′

1, q
′

3, . . . , q
′

2y−3} ∪ {r2, r4, . . . , r2x−4, r
′

2, r
′

4, . . . , r
′

2x−4}

∪ {t2, t4, . . . , t2z−4, t
′

2, t
′

4, . . . , t
′

2z−4} ∪ {u2, u4, . . . , u2y−4, u
′

2, u
′

4, . . . , u
′

2y−4}

E(HC(x, y, z)SR) = {p1 ∼ p
′

1, p3 ∼ p
′

3, . . . , p2x−1 ∼ p
′

2x−1} ∪ {s1 ∼ q
′

1, s3 ∼ q
′

3, . . . , s2z−1 ∼ q
′

2y−1}

∪ {q1 ∼ s
′

1, q3 ∼ s
′

3, . . . , q2y−1 ∼ s
′

2z−1} ∪ {p3 ∼ r
′

2, p5 ∼ r
′

4, . . . , p2x−3 ∼ r
′

2x−4}

∪ {s3 ∼ u
′

2, s5 ∼ u
′

4, . . . , s2z−3 ∼ u
′

2y−4} ∪ {q3 ∼ t
′

2, q5 ∼ t
′

4, . . . , q2y−3 ∼ t
′

2z−4}

∪ {r2 ∼ r
′

2, r4 ∼ r
′

4, . . . , r2x−4 ∼ r
′

2x−4} ∪ {t2 ∼ u
′

2, t4 ∼ u
′

4, . . . , t2z−4 ∼ u
′

2y−4}

∪ {u2 ∼ t
′

2, u4 ∼ t
′

4, . . . , u2y−4 ∼ t
′

2z−4} ∪ {r2 ∼ p
′

3, r4 ∼ p
′

5, . . . , r2x−4 ∼ p
′

2x−3}

∪ {t2 ∼ q
′

3, t4 ∼ q
′

5, . . . , t2z−4 ∼ q
′

2y−3} ∪ {u2 ∼ s
′

3, u4 ∼ s
′

5, . . . , u2y−4 ∼ s
′

2z−3}

∪ {p1 ∼ p
′

2x−1, p2x−1 ∼ p
′

1, s1 ∼ q
′

2y−1, s2z−1 ∼ q
′

1, q1 ∼ s
′

2z−1, q2y−1 ∼ s
′

1}.
□

Theorem 5. For x = y = z ≥ 2, sdim(HC(x, y, z)) = 3(x+ y + z) − 12.

Proof : As strong resolving graph of HC(x, y, z) is isomorphic to (x+y+z−6)K4 +3C4, by Remark 3 a minimum
vertex cover W of the graph HC(x, y, z)SR must contains 3 vertices from each copies of K4 and 2 vertices from
each copies of C4. So, by Theorem 2 sdim(HC(x, y, z)) = τ(HC(x, y, z)) = |W | = 3(x+ y + z) − 12. □

5|Application and Case Study:

5.1|Fault Diagnosis in Chemical Process Plants
Reactors, heat exchangers, distillation columns, storage tanks, and other associated equipment are just a few
of the complex networks that make up chemical process plants. Ensuring safety, optimizing effectiveness, and
minimizing financial losses require close observation of each unit’s proper operation and quick identification of
malfunctions or unusual behaviors. A helpful method is for the visualizing a process plant’s network topology is
an application of the graph theory. To look at these individual units are portrayed as vertices in this depiction,
as well as the physical connections among them are shown as edges in the results. Also to analyzing with these
networks and the developing efficient defect diagnosis methods can be very accomplished by implementing the
concepts from graph theory such as metric dimensions and the application of these topics.

We can show it by an example, consider to look at a specific section of a processing plant that makes aspirin, or
we can also take as acetylsalicylic acid. Reactors, product separators, waste streams, recycle streams, and product
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storage tanks are typical parts of this area. Now we can see that as thinking of this portion as a hollow coronoid
graph, as well as with the reactor, separator, and tank as the longer sides and the recycle/waste streams as the
shorter ones, one can create an organized representation of it in the application process. Now for fully monitor
the network as a whole of the system, here we can determine the lowest set of units (vertices) by determining
the graph’s strong metric dimension for this application. for all these units which are essentially important
measuring points that are employed to spot anomalies or deviations from standard operating parameters in this
system. We can see that for the time, the data from sensors at these critical vertices, like reactor temperature or
product tank level, that depart from predicted values suggest a similarly malfunction in the relevant units for
this particular application.

Figure 5. A single 3D depiction on the left and the corresponding 2D MolGraph on the right
are snapshots from a peptide trajectory in the gas phase.

Resolving all other unit pairings requires the vertices for the reactor, separator, and product tank, which together
provide the strong metric basis. The dimensions obtained from this study make it easier to determine exactly
how few monitoring points are needed for aspirin plant subsection graphs of different sizes. By intelligently
situating sensors, this optimization helps to maximize problem diagnosis capabilities while minimizing resource
consumption. The topological structure of chemical graphs can be efficiently captured to determine the best
places to place sensors by utilizing the strong metric dimension metric.

This real-world use highlights the value of learning about metric dimensions in chemical graph theory for process
monitoring, risk mitigation, and troubleshooting in the chemical industry. Theoretical knowledge acquired from
these types of analysis is crucial for optimizing operational resilience through improved fault diagnosis techniques
and sensor placement decisions.

5.2|Results and Discussions
The utilization of graph theory principles, specifically with regard to metric dimensions, in fault diagnosis for
chemical process plants—such as those engaged in the production of aspirin or acetylsalicylic acid—has shown
to result in notable improvements in terms of safety, efficiency, and loss mitigation.

5.3|Graph Representation and Analysis
• For instance, data from sensors at these critical vertices, such as reactor temperature or product tank

level, that depart from predicted values suggest a likely malfunction in the relevant units.
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Figure 6. A schematic representation of the message passing process in crystalline materials
and molecules. b Benchmark for QM9. Since 2017, the mean absolute error of the predicted
energies for several GNN models has been represented by internal (red circles), lowest unoccupied
molecular orbital (LUMO, inverted blue triangles), and highest occupied molecular orbital
(HOMO, orange triangles).

• Unit interdependencies could be clearly illustrated by using hollow coronoid diagrams to visualize specific
subsections, like the one on aspirin production.

5.4|Identification of Critical Measurement Points
• The smallest set of crucial measurement points required for closely observing the entire network might

be found by locating the strong metric dimension.

• Important components such as the reactor, product separator, and product storage tank have made it
feasible to address possible flaws or unusual behaviors throughout the network.

5.5|Optimization of Sensor Placement
• Through analysis of strong metric dimensions, the minimum number of monitoring points required for

various subsection graphs may be determined exactly.

• By carefully placing the sensors, this optimization technique improved problem identification abilities
while using less resources.

5.6|Use in Real Life and Importance
• Metric dimensions are essential for process monitoring, risk mitigation, and troubleshooting in the real

chemical industry, as demonstrated by the practical application of these dimensions in chemical graph
theory.

• Graph theory investigations could provide useful insights for placing sensors in a way that would improve
operational resilience and efficiency.
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5.7|Theoretical Perspectives for Improving Fault Diagnosis Techniques
• Metric dimension studies yield theoretical knowledge that is crucial to enhancing fault diagnostic methods

and ensuring that these strategies are effective in addressing real-world operational problems.

• Understanding the topological nature of chemical graphs helps to improve operational safety and
reliability by facilitating the development of improved defect identification tools.

Figure 7. Size distribution of the water molecules’ H-bonded rings and cycles in the condensed
phase of 2D MolGraphs. The interfaces between air and water are on the left; graphene and
water are on the middle; and BN and water are on the right.

To sum up, the incorporation of principles from graph theory, namely metric dimensions, into fault diagnostic
procedures for chemical process facilities provides a methodical way to guarantee financial viability, safety, and
efficiency. The chemical industry can greatly benefit from innovation and improved fault diagnosis techniques
through the actual implementation of these theoretical findings.

6|Conclusion
The strong metric dimension is a useful notion with various applications in many fields, including networks
security, robotics, wireless sensor networks, GPS navigation system, fault tolerance and network disruption. In
this article, weιextendedιtheιstudyιofιthe strong metricιdimension by finding the strong metric dimension of
HC(x, y, z) for x = y = z ≥ 2 by establishing a relationship between covering number of strong resolving graph
HC(x, y, z)SR and the strong metric dimension. We concludeιthat sdim(HC(x, y, z)) = 3(x+ y + z) − 12. In
future we extend our work by findingιthe strongιmetric dimension of hollow coronoid when x, y, z are not equal
to each other and further by studying other invariant of metric dimension.

7|Future Recommendations
This paper presents an important advancement in studying the strong metric dimension of hollow coronoid
structures. However, there are several promising directions for future work:

(1) Investigate the strong metric dimension of hollow coronoid structures where x, y, and z are not equal.
This paper focused on the case where the three sides of the hollow coronoid structure are symmetric.
Analyzing asymmetric hollow coronoids where x ̸= y ̸= z would be an interesting extension.
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(2) Explore other metric dimension invariants of hollow coronoids. In addition to the strong metric dimension,
parameters like fractional metric dimension, mixed metric dimension, k-metric dimension etc. could
provide further insights into these chemical structures when transformed into graphs.

(3) Examine other classes of chemical structures. The techniques used in this paper could be applied to find
the strong metric dimension of other chemicals like benzenoids, phenylenes, polyhexes etc. This would
expand our understanding of chemical graphs.

(4) Consider weighted graphs. Assigning weights to edges of the graph representation could reveal new
findings regarding resolving sets and metric dimensions. The interplay between weights and shortest
paths may impact the strong metric dimension.

(5) Develop computational methods and algorithms. Efficient methods to calculate the strong metric
dimension for large chemical graphs would enable rapid analysis. Approximation algorithms and
heuristics could produce useful results at scale.

(6) Explore applications of the strong metric dimension. This parameter has diverse applications in areas
like robot navigation, network discovery, fault diagnosis etc. Relating the results to practical uses and
implementations would demonstrate the utility of this research.

In summary, this work opens up many possibilities for further theoretical studies of metric dimensions of chemical
structures, development of algorithms, and real-world applications. Building on these findings could uncover
new insights at the intersection of graph theory, metric geometry and chemistry.
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